

Journal of Organometallic Chemistry 503 (1995) 75-92

Preparation of cyclomanganated chalcones and their reactions with methyl acrylate and other α , β -unsaturated carbonyl compounds

Warren Tully, Lyndsay Main, Brian K. Nicholson *

School of Science and Technology, University of Waikato, Hamilton, New Zealand

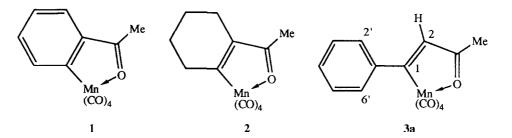
Received 3 January 1995

Abstract

Chalcones [(E)-1,3-diarylprop-2-en-1-ones] react with benzyltetracarbonylmanganese under reflux in petroleum spirit to give two types of cyclomanganation products. The first, involving metallation at the alkenyl β -carbon of the enone, are derivatives of [[1-phenyl-2-phenylcarbonyl- κO]ethenyl- κC^1]tetracarbonylmanganese, while the second type, manganated at the aryl ring *ortho*-carbon, are derivatives of [2-[3-phenylprop-2-en-1-onyl- κO]phenyl- κC^1]tetracarbonylmanganese. In general, more "alkene-manganated" than "ring-manganated" product is formed, with the ratio influenced significantly by certain substituents, e.g. a 4-CF₃ substituent on the phenyl ring at C3 of the enone strongly promotes "alkene-manganation". In some cases there are minor by-products derived from coupling of two chalcone molecules after initial cyclomanganation. The crystal structures are reported for two such products, [2-((1S*,2R*,3S*)-1-hydroxy-1-((E)-2-(2-trifluoromethylphenyl)-3-(2-trifluoromethylphenyl)-6-methoxy-2-indanylcarbonyl- κO]-6-methoxyphenyl- κC^1]tetracarbonylmanganese and (1S*,4S*,5R*)-5-(4-bromobenzoyl)-1-(4-bromophenyl)-3,4-di-(4-trifluoromethylphenyl)cyclopent-2-en-1-ol.

In acetonitrile under reflux, alkene-manganated chalcones react with methyl acrylate (methyl propenoate) to form derivatives of methyl (*E*)-4,6-diphenyl-6-oxohex-2-enoate and of 5-(2-methoxycarbonylethyl)-3,5-diphenylfuran-2(5H)-one. The latter butenolides are not formed when the reactions are carried out in carbon tetrachloride, only the former α,β -unsaturated esters. By contrast, in a few reactions studied, acrolein (propenal) and methyl vinyl ketone (but-3-en-2-one) give only the butenolide products when treated with alkene-manganated chalcones in refluxing acetonitrile. An exception is the reaction of methyl vinyl ketone with [[1-(3,4,5-trimethoxy-phenyl)-2-(4-chlorophenylcarbonyl- κC^1]tetracarbonylmanganese to form the cyclized product 5-acetyl-1-(4-chlorophenyl)-3-(3,4,5-trimethoxyphenyl)cyclopent-2-en-1-ol.

Keywords: Manganese; Alkene; Chalcones; Crystal structure; Cyclometallation; Metallacycle


1. Introduction

The reaction of aromatic ketones with $PhCH_2Mn$ (CO)₅ is a very general one, giving derivatives of type 1 for a wide range of benzenoid and heteroaromatic substrates. This cyclomanganation of an *O*-donor substrate parallels well-established preparations of cyclopalladiated *N*-donor aromatic molecules. The aryl-manganese compounds have proven generally to be more useful than the aryl-palladium *N*-donor series for subsequent functionalization at the metallated carbon atom, giving novel species with alkynes and alkenes and elusive ortho-substitution products with $HgCl_2$ and halogens. A review covers the developments to 1992 [1].

Cyclomanganation reactions involving non-aromatic substrates are much rarer. One early example of a direct manganation of an enone was Cabral's preparation of 2 by reaction of PhCH₂Mn(CO)₅ with 1-acetylcyclohexene [2], and more recently Robinson prepared 3a in a procedure directly analogous to those used for aromatic substrates [3]. Tully [4] extended this work to chalcones (1,3-diphenylpropenones) and Cambie et al. subsequently reported [5] cyclomanganation of chalcone itself to give 3b. Other compounds of type 3 are reported in the literature, but they were prepared via alkyne-insertion reactions rather than by direct metallation. Thus, following Harbourne and Stone's reported [6] insertion of 3,3,3-trifluoroethyne into HMn(CO)₅, Booth and Hargreaves treated $RMn(CO)_5$ (R = Ph, Me) with alkynes to give 3a and related examples [7], and subsequent work, including the use of high-pressure condi-

^{*} Corresponding author.

⁰⁰²²⁻³²⁸X/95/\$09.50 © 1995 Elsevier Science S.A. All rights reserved SSDI 0022-328X(95)05488-X

tions, by DeShong and co-workers extended the range [8].

The present paper describes some new compounds of type **3**, prepared by direct cyclometallation reactions, and coupling reactions of these complexes with methyl acrylate (methyl propenoate), methyl vinyl ketone (but-3-en-2-one) and acrolein (propenal) related to previously reported coupling reactions of such alkenes with orthomanganated aryl ketones [1].

2. Experimental details

2.1. General

The carbonyl PhCH₂Mn(CO)₅ was prepared by the standard literature method [9a] (see also Ref. [9b]) and the chalcones by standard base-catalyzed condensation of aryl ketones and aldehydes. Other commercial reagents were used without purification. Petroleum spirit had a boiling point of $60-80^{\circ}$ C. Reactions were con-

Table 1

Structures and yields of cyclomanganation products obtained from the reaction of chalcones with benzylpentacarbonylmanganese

$R_{n}'' \xrightarrow{2''} H \xrightarrow{6'} R_{n}' \xrightarrow{2''} H \xrightarrow{2''} H \xrightarrow{3'} 2 \xrightarrow{4'} 5 \\ A \xrightarrow{6''} (CO)_{4}} R_{n}'' \xrightarrow{2''} A \xrightarrow{4'} 5 \xrightarrow{1'} 5 \xrightarrow{1'} 1 \xrightarrow{4'} 5 \xrightarrow{1'} 6 \xrightarrow{1'} 1 \xrightarrow{4'} 5 \xrightarrow{1'} 1 \xrightarrow{4'} 1 \xrightarrow{5'} 1 \xrightarrow{1'} 1 \xrightarrow{4'} 1 \xrightarrow{5'} 1 \xrightarrow{1'} 1 \xrightarrow{5'} 1 \xrightarrow{1'} 1 \xrightarrow{5'} $							
Compound (% yield) ^a		R'n	Compound (% yield) ^a	R″ _n	R _n		
3b (69)	Н	Н					
3c (66)	Н	$2',6'-(OMe)_2$					
3d (73)	Н	$3', 4', 5'-(OMe)_3$	4d (8)	Н	$4,5,6-(OMe)_3$		
3e (58)	4"-OMe	$3',4',5'-(OMe)_3$	4e (14)	4"-OMe	$4,5,6-(OMe)_3$		
3f (61)	$4''-NMe_2$	$3',4',5'-(OMe)_3$	4f (10)	4''-NMe ₂	$4,5,6-(OMe)_3$		
3g (21)	$3'', 4'', 5''-(OMe)_3$	$3',4'-(OCH_2O)$	4g (21)	$3'', 4'', 5''-(OMe)_3$	5,6-(OCH ₂ O)		
3h (78)	$3'', 4'', 5''-(OMe)_3$	4'-CF ₃					
3i (78)	$3'', 4'', 5''-(OMe)_3$	4'-Cl					
			4j (45)	2"-CF ₃	6-OMe		
			4 j′ (17)	$2''-CF_3$	4-OMe		
			4k (44)	$2''-CF_3$	6-Cl		
			4k ' (20)	$2''-CF_3$	4-Cl		
3I (35)	2"-CF ₃	$3',4',5'-(OMe)_3$	4I (52)	2"-CF ₃	$4,5,6-(OMe)_{3}$		
3m (23)	2''-CF ₃	H	4m (35)	2"-CF ₃	Н		
3n (28)	2"-CF ₃	4′-Br	4n (38)	2"-CF ₃	5-Br		
3o (72)	4"-CF ₃	4'-Br					
3p (65)	4"-CF ₃	$3',4',5'-(OMe)_3$	4p (10)	4"-CF ₃	$4,5,6-(OMe)_3$		
3q (94)	4"-CF ₃	4'-Cl					
3r (88)	4"-CF ₃	H					

^a Yields determined by ¹H-NMR signal integration on mixtures of isomers when inseparable by chromatography (see Section 2 for individual cases).

ducted under nitrogen, but subsequent work-up was without any precautions to exclude air. Preparative-scale layer chromatography (PLC) was performed on Merck Kieselgel 60 silica gel, and alumina (Brockmann activity II) was used for column chromatography. The composition of mixed solvents is expressed on a volume/ volume basis.

NMR spectra were recorded on a Bruker AC300 instrument in $CDCl_3$, and infrared spectra (in dichloromethane unless specified) were obtained on a Digilab FTS-45 FTIR. FAB mass spectra were from a VG ZAB 2HF instrument using a 2-nitrophenol matrix.

2.2. Cyclomanganation reactions

2.2.1. Note on nomenclature, terminology and numbering in cyclomanganated chalcones

The structures of the chalcone cyclomanganation products are shown at the head of Table 1. For convenience in the text, products 3 are referred to as "alkene-manganated" and products 4 as "ring-manganated". Rings A and B as labeled are referred to as the " β -phenyl" and the "benzoyl" ring respectively.

Using systematic 'kappa' notation, the alkenylmanganese compound **3b** is named [[1-phenyl-2-phenylcarbonyl- κO]ethenyl- κC^1]tetracarbonylmanganese, while the phenylmanganese compounds **4** are derivatives of the parent [2-[3-phenylprop-2-en-1-onyl- κO]phenyl- κC^1]tetracarbonylmanganese.

Unprimed numbers on the structures are based on the nomenclature priorities. Prime and double prime symbols are not part of systematic numbering or nomenclature, but are used on substituents in order to allow distinction when making NMR assignments.

2.2.2. General procedure for the preparation of cyclomanganated chalcones

A solution of the chalcone (about 1–3 mmol) and $PhCH_2Mn(CO)_5$ (1.1 mmol equivalent) in petroleum spirit (25–60 ml) was heated under reflux under nitrogen for 5 h (unless otherwise stated). The solvent was evaporated under vacuum and the residue was purified by either PLC or column chromatography, generally with petroleum spirit/dichloromethane (4:1) as eluent. Standard work-up procedure after PLC involved band removal and extraction with dichloromethane followed by solvent evaporation under vacuum. Recrystallizations were carried out from dichloromethane/pentane unless otherwise specified. Yields are given in Table 1, which does not include the by-products formed in some cases.

(a) Manganation of (E)-1-methyl-3-phenylprop-2-en-1one. Column chromatography with petroleum spirit/ dichloromethane (3:1) as eluent gave one major band identified as $[3-\infty \kappa O-1-\text{phenylbutyl}-\kappa C^{1}]$ tetracarbonylmanganese (**3a**), which was recrystallized from petroleum spirit as yellow crystals (65%), m.p. 62°C (literature [10]: 64–65°C). IR: ν (CO) 2083 (m), 1996 (vs), 1953 (s) cm⁻¹. ¹H NMR: δ 7.36 (m, 5H, H2'– H6'), 6.97 (s, 1H, H2), 2.31 (s, 3H, CH₃).

The following work-up details for individual reactions are letter-coded (b)–(r) to the compound codes in Table 1.

(b) Manganation of (E)-1,3-diphenylprop-2-en-1-one. PLC (with petroleum spirit as solvent) gave one major band identified as [[1-phenyl-2-phenylcarbonyl- κO]ethenyl- κC^1]tetracarbonylmanganese (**3b**), which recrystallized from chloroform/petroleum spirit as red crystals (69%), m.p. 63°C. IR: ν (CO) 2083 (m), 1998 (vs), 1944 (s) cm⁻¹. ¹H NMR: δ 8.02 (m, 2H, H2', H6'), 7.72 (s, 1H, H2), 7.44 (m, 8H, H3'-H5', H2"-H6"). Anal. Found: C, 61.24; H, 2.83. C₁₉H₁₁O₅Mn. Calc.: C, 60.98; H, 2.96%.

(c) Manganation of (E)-1-(2,6-dimethoxyphenyl)-3phenylprop-2-en-1-one. PLC (with dichloromethane/ petroleum spirit 1:1) gave one major band at $R_{\rm f}$ 0.7. Standard work-up gave [[1-phenyl-2-(2,6-dimethoxyphenyl)carbonyl- κO]ethenyl- κC^1]tetracarbonylmanganese 3c (66%) as a red oil, which was crystallized from petroleum spirit as small orange crystals, m.p. 122°C. IR: v(CO) 2083 (m), 1999 (vs, br), 1940 (s) cm⁻¹. ¹H NMR: δ 7.50 (t, 2H, J = 7.5 Hz, H3", 5"), 7.44 (d, 2H, J = 7.5 Hz, H2", 6"), 7.37 (d, 1H, J = 7.5Hz, H4"), 7.32 (d, 1H, J = 8.4 Hz, H4'), 7.24 (s, 1H, H2), 6.57 (d, 2H, J = 8.4 Hz, H3', 5'), 3.80 (s, 6H, 2', $6'-(OMe)_2$). FAB-MS (*m*/*e*): 434 (M⁺, 30), 378 (M⁺-2CO, 15), 350 (M⁺-3CO, 70), 322 (M⁺-4CO, 100). Anal. Found: C, 58.20; H, 3.72. C₂₁H₁₅O₇Mn. Calc.: C, 58.08; H, 3.48.

(d) Manganation of (E)-3-phenyl-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one. PLC (with dichloromethane/petroleum spirit 3:2) gave one major band at R_f 0.2. This gave a red oil which crystallized as large orange crystals, m.p. 113 °C, of [[1-phenyl-2-(3,4,5-trimethoxyphenyl)carbonyl- κO]ethenyl- κC^1] tetracarbonylmanganese **3d** (73%). IR: ν (CO) 2083 (m), 1996 (vs), 1943 (s) cm⁻¹. ¹H NMR: δ 7.66 (s, 1H, H2), 7.46 (m, 5H, H2"-6"), 7.26 (s, 2H, H2', 6'), 3.94 (s, 9H, 3', 4', 5'-(OMe)₃). FAB-MS (m/e): 464 (M⁺, 2), 436 (M⁺-CO, 2), 408 (M⁺-2CO, 1), 378 (M⁺-3CO, 14), 352 (M⁺-4CO, 100). Anal. Found: C, 56.88; H, 3.87. C₂₂H₁₇O₈Mn. Calc.: C, 56.91; H, 3.69.

A small amount (about 8%) of the ring-manganated product [4,5,6-trimethoxy-2-[3-phenylprop-2-en-1-on- κO -yl]phenyl- κC^1]tetracarbonylmanganese (4d) was evident in the NMR spectrum of crude 3d, and it formed small red crystals, m.p. 146°C, which were hand-separated. IR: ν (CO) 2079 (m), 1991 (vs, br), 1940 (s) cm⁻¹. ¹H NMR: δ 7.84 (d, 1H, J = 15.6 Hz, H3'), 7.67 (m, 2H, H2", 6"), 7.45 (m, 4H, H2', H3", 5", H4"), 7.41 (s, 1H, H3), 4.08 (s, 3H, 6-OMe), 3.95 (s, 3H, 5-OMe), 3.91 (s, 3H, 4-OMe).

(e) Manganation of (E)-3-(4-methoxyphenyl)-1-(3,4,5trimethoxyphenyl)prop-2-en-1-one. PLC (with dichloromethane/petroleum spirit 5:1) gave one major band at R_f 0.6, which yielded a red oil from which was crystallized [[1-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenylcarbonyl- κO]ethenyl- κC^1]tetracarbonylmanganese (**3e**) (58%) as large orange crystals, m.p. 129°C. IR: ν (CO) 2081 (m), 1993 (vs, br), 1939 (s) cm⁻¹. ¹H NMR: δ 7.65 (s, 1H, H2), 7.53 (d, 2H, J = 8.8 Hz, H2", 6"), 7.25 (s, 2H, H2', 6'), 7.01 (d, 2H, J = 8.8 Hz, H3", 5"), 3.95 (s, 6H, 3', 5'-(OMe)_2), 3.94 (s, 3H, 4'-OMe), 3.86 (s, 3H, 4"-OMe). FAB-MS (m/e): 494 (M⁺, 40), 466 (M⁺-CO, 30), 410 (M⁺-3CO, 45), 382 (M⁺-4CO, 100). Anal. Found: C, 56.18; H, 3.85. C₂₃H₁₉O₉Mn. Calc.: C, 55.88; H, 3.87.

A small amount (about 14%) of the ring-manganated product [4,5,6-trimethoxy-2-[3-(4-methoxyphenyl)prop-2-en-1-on- κO -yl]phenyl- κC^{1}]tetracarbonylmanganese (4e), small red crystals, m.p. 144°C, was hand-separated. IR: ν (CO) 2078 (m), 1989 (vs, br), 1938 (s) cm⁻¹. ¹H NMR: δ 7.82 (d, 1H, J = 15.4 Hz, H3'), 7.64 (d, 2H, J = 8.8 Hz, H2", 6"), 7.39 (s, 1H, H3), 7.31 (d, 1H, J = 15.4 Hz, H2'), 6.96 (d, 2H, J = 8.8Hz, H3", 5"), 4.07 (s, 3H, 6-OMe), 3.93 (s, 3H, 5-OMe), 3.91 (s, 3H, 4-OMe), 3.86 (s, 3H, 4"-OMe). FAB-MS (m/e): 494 (M⁺, 2), 466 (M⁺-CO, 2), 410 (M⁺-3CO, 8), 382 (M⁺-4CO, 100).

(f) Manganation of (E)-3-(4-N,N-dimethylaminophenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one. PLC (with dichloromethane/petroleum spirit 1:1) gave one major band at R_f 0.25. Standard work-up gave a red oil from which was crystallized [[1-(4-N,N-dimethylami-nophenyl)-2-(3,4,5-trimethoxyphenyl)carbonyl- κO]-ethenyl- κC^1]tetracarbonylmanganese **3f** (61%) as large

red crystals, m.p. 156°C. IR: ν (CO) 2079 (m), 1992 (vs), 1936 (s)cm⁻¹. ¹H–NMR: δ 7.67 (s, 1H, H2), 7.65 (d, 2H, J = 8.8 Hz, H2", 6"), 7.24 (s, 2H, H2', 6'), 6.78 (d, 2H, J = 8.8 Hz, H3", 5"), 3.94 (s, 6H, 3', 5'-(OMe)₂), 3.92 (s, 3H, 4'-OMe), 3.07 (s, 6H, NMe₂). FAB– MS(m/e): 507 (M⁺, 6), 479 (M⁺-CO, 3), 423 (M⁺-3CO, 12), 410 (M⁺-3CO-Mc, 6), 395 (M⁺-4CO, 100). Anal. Found: C, 56.79; H, 4.58; N, 2.78. C₂₄ H₂₂NO₈Mn. Calc.: C, 56.81; H, 4.37; N, 2.76.

Also evident from the NMR spectrum of crude **3f**, before crystallization a small amount (about 10% by NMR) of the ring-manganated product [4,5,6-trimethoxy-2-[3-(4-N,N-dimethylaminophenyl)prop-2-en-1-on- κO -yl]phenyl- κC^1]tetracarbonylmanganese (**4f**) was present. This was not isolated, but the following

assignments are analogous to those for 4c and 4d. ¹H NMR: δ 7.81 (d, 1H, J = 15.0 Hz, H3'), 7.59 (d, 2H, J = 8.8 Hz, H2", 6"), 7.38 (s, 1H, H3), 7.24 (d, 1H, J = 15.0 Hz, H2'), 6.70 (d, 2H, J = 8.8 Hz, H3", 5"), 4.06 (s, 3H, 6-OMe), 3.93 (s, 6H, 5-OMe), 3.90 (s, 3H, 4-OMe), 3.07 (s, 6H, NMe₂).

(g) Manganation of (E)-1-(3',4'-methylenedioxyphenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one. PLC (with ethyl acetate / petroleum spirit 1:1) gave one major band at $R_{\rm f}$ 0.25. Standard work-up gave a mixture (about 1:1 by NMR spectroscopy) of [5,6-methylenedioxy-2-[3-(3,4,5-trimethoxyphenyl) prop-2-en-1-on- κO -yl] phenyl- κC^{1}]tetracarbonylmanganese (4g) and [[1-(3,4,5-trimethoxyphenyl)-2-(3,4-methylenedioxyphenylcarbonyl- κO]ethenyl- κC^1]tetracarbonylmanganese (3g) as a red oil (43%). This mixture was crystallized by the diffusion of pentane into a dichloromethane solution with the ring-manganated product (4g) crystallizing first as small dark orange crystals, m.p. 138°C. IR: ν (CO) 2083 (m), 1994 (vs, br), 1943 (s) cm⁻¹. ¹H NMR: δ 7.77 (d, 1H, J = 8.2 Hz, H3), 7.73 (d, 1H, J = 15.4 Hz, H3'), 7.33 (d, 1H, J = 15.4 Hz, H2'), 6.87 (s, 2H, H2", 6''), 6.72 (d, 1H, J = 8.2 Hz, H4), 6.12 (s, 2H, OCH₂O), 3.93 (s, 6H, 3", 5"-(OMe)₂), 3.92 (s, 3H, 4"-OMe). FAB-MS (m/e): 508 $(M^+, 2)$, 452 $(M^+-2CO, 1)$, 424 (M⁺-3CO, 9), 396 (M⁺-4CO, 100). Anal. Found: C, 54.72; H, 3.55. C₂₃H₁₇O₁₀Mn. Calc.: C, 54.35; H, 3.37.

[[1-(3,4,5-Trimethoxyphenyl)-2-(3,4-methylenedioxyphenylcarbonyl- κO]ethenyl- κC^1]tetracarbonylmanganese (**3g**) crystallized subsequently as small orange crystals, m.p. 125°C. IR: ν (CO) 2082 (m), 1994 (vs, br), 1938 (s) cm⁻¹. ¹H NMR: δ 7.64 (dd, 1H, J =8.1/1.7 Hz, H6'), 7.62 (s, 1H, H2), 7.49 (d, 1H, J = 1.7 Hz, H2'), 6.89 (s, 2H, H2", 6"), 6.89 (d, 1H, J = 8.1 Hz, H5'), 6.07 (s, 2H, OCH₂₀), 3.94 (s, 6H, 3", 5"-(OMe)₂), 3.92 (s, 3H, 4"-OMe).

(h) Manganation of (E)-1-(4-trifluoromethylphenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one. PLC (with dichloromethane/petroleum spirit 3:1) gave one major band at R_f 0.4. Standard work-up gave [[1-(3,4,5-trimethoxyphenyl)-2-(4-trifluoromethylphenylcarbonyl- κO]ethenyl- κC^1]tetracarbonylmanganese (**3h**) as a red oil (78%), which was crystallized from petroleum spirit as small red crystals, m.p. 120°C. IR: ν (CO) 2084 (m), 1998 (vs), 1944 (s). ¹H NMR: δ 8.14 (d, 2H, J = 8.1 Hz, H2', 6'), 7.76 (s, 1H, H2), 7.75 (d, 2H, J = 8.1 Hz, H3', 5'), 6.78 (s, 2H, H2'', 6''), 3.95 (s, 6H, 3'', 5''-(OMe)₂), 3.94 (s, 3H, 4''-OMe). FAB-MS (m/e): 532 (M⁺, 5), 504 (M⁺-CO, 2), 448 (M⁺-3CO, 13), 420 (M⁺-4CO, 100). Anal. Found: C, 52.16; H, 3.31. C₂₃H₁₆F₃O₈Mn. Calc.: C, 51.90; H, 3.03.

(i) Manganation of (E)-1-(4-chlorophenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one. Column chromatography gave [[1-(3,4,5-trimethoxyphenyl)-2-(4-chlorophenylcarbonyl- κO)]ethenyl- κC^1]tetracarbonylmanganese (**3i**) (78%) as a red oil, which crystallized from warm petroleum spirit/dichloromethane (10:1) as chunky dark orange crystals, m.p. 103°C. IR: ν (CO) 2083 (m), 1998 (vs, br), 1942 (s). ¹H NMR: δ 7.96 (d, 2H, J = 8.6 Hz, H2', 6'), 7.69 (s, 1H, H2), 7.47 (d, 2H, J = 8.6 Hz, H3', 5'), 6.76 (s, 2H, H2", 6"), 3.94 (s, 9H, 3", 4", 5"-(OMe)₃). Anal. Found: C, 53.25; H, 3.17. C₂₂H₁₆ClO₈ Mn. Calc.: C, 52.98; H, 3.23.

(j) Manganation of (E)-1-(3-methoxyphenyl)-3-(2-trifluoromethylphenyl)prop-2-en-1-one. This reaction required refluxing overnight. PLC (with dichloromethane/petroleum spirit 3:2) gave four bands at R_f 0.95, 0.90, 0.3 and 0.2, from which were obtained, in sequence, [6-methoxy-2-[3-(2-trifluoromethylphenyl)prop-2-en-1-on- κO -yl]phenyl- κC^1]tetracarbonylmanganese (4j), [4-methoxy-2-[3-(2-trifluoromethylphenyl)prop-2-en-1-on- κO -yl]phenyl- κC^1]tetracarbonylmanganese (4j'), [2-((1S*,2R*,3S*)-1-hydroxy-1-((E)-2-(2-trifluoromethylphenyl)-ethenyl)-3-(2-trifluoromethylphenyl)-6-methoxy-2-indanylcarbonyl- κO)-6-methoxyphenyl- κC^1]tetracarbonylmanganese (7a) and an unassigned isomer of 7a.

[6-Methoxy-2-[3-(2-trifluoromethylphenyl)prop-2-en-1-on-κ O-yl]phenyl-κ C¹]tetracarbonylmanganese **4j** (45%) was crystallized from petroleum spirit as small dark rcd crystals, m.p. 127°C. IR: ν (CO) 2080 (m), 1992 (vs, br), 1946 (s) cm^{-1. 1}H NMR: δ 8.17 (dq, 1H, J = 15.4/2.0 Hz, H3'), 7.84 (d, 1H, J = 7.6 Hz, H6"), 7.76 (d, 1H, J = 7.6 Hz, H3"), 7.68 (d, 1H, J = 7.5 Hz, H3), 7.63 (t, 1H, J = 7.6 Hz, H4"), 7.54 (t, 1H, J = 7.6Hz, H5"), 7.47 (d, 1H, J = 15.4 Hz, H2'), 7.23 (t, 1H, J = 7.8 Hz, H4), 6.94 (d, 1H, J = 7.8 Hz, H5), 3.90 (s, 3H, 3'-OMe). FAB-MS (m/e): 472 (M⁺, 18), 444 (M⁺-CO, 9), 388 (M⁺-3CO, 88), 360 (M⁺-4CO, 100). Anal. Found: C, 53.50; H, 2.58. C₂₁H₁₂F₃O₆Mn. Calc.: C, 53.41; H, 2.56%.

[4-Methoxy-2-[3-(2-trifluoromethylphenyl)prop-2-en-1-on- κ O-yl]phenyl- κ C¹]tetracarbonylmanganese **4j**' (17%) was crystallized from petroleum spirit as small dark red crystals, m.p. 136°C. IR: ν (CO) 2080 (m), 1993 (vs, br), 1937 (s) cm⁻¹. ¹H NMR: δ 8.19 (dq, 1H, J = 15.4/2.0 Hz, H3'), 8.02 (d, 1H, J = 8.2 Hz, H6), 7.84 (d, 1H, J = 7.7 Hz, H6"), 7.77 (d, 1H, J = 7.7 Hz, H3"), 7.64 (t, 1H, J = 7.7 Hz, H4"), 7.55 (t, 1H, J = 7.7 Hz, H5"), 7.54 (d, 1H, J = 2.6 Hz, H3), 7.42 (d, 1H, J = 15.4 Hz, H2'), 7.16 (dd, 1H, J = 8.2/2.6 Hz, H5), 3.87 (s, 3H, 5'-OMe). FAB-MS (m/e): 472 (M⁺, 6), 444 (M⁺-CO, 3), 388 (M⁺-3CO, 24), 360 (M⁺-4CO, 100). Anal. Found: C, 53.62; H, 2.83. C₂₁H₁₂F₃O₆Mn. Calc.: C, 53.41; H, 2.56.

[2-(($1S^*, 2R^*, 3S^*$)-1-Hydroxy-1-((*E*)-2-(2-trifluoromethylphenyl)ethenyl)-3-(2-trifluoromethylphenyl)-6methoxy-2-indanylcarbonyl- κO)-6-methoxyphenyl κC^1]tetracarbonylmanganese **7a** (26%) was crystallized by diffusion of pentane into a dichloromethane solution, as small yellow crystals, m.p. 123°C, which were characterized by X-ray crystallography (see below). IR: ν (CO) 2082 (m), 1994 (vs, br), 1946 (s) cm⁻¹. ¹H NMR: δ 7.73 (d, 1H, J = 7.7 Hz, Ar–H), 7.68 (d, 1H, J = 7.7 Hz, Ar–H), 7.55 (d, 1H, J = 7.7 Hz, Ar–H), 7.46–6.7 (m, 12H, H2", Ar–H), 5.97 (d, 1H, J = 15.7Hz, H1"), 5.44 (d, 1H, J = 7.7 Hz, H2'), 4.72 (d, 1H, J = 7.7 Hz, H3'), 3.82 (s, 6H, (OMe)₂), 2.68 (s, 1H, OH). FAB–MS (m/e): 778 (M⁺, 3), 761 (M⁺-OH, 5), 750 (M⁺-CO, 3), 666 (M⁺-4CO, 100).

The isomer of **7a** (10%) was extracted from the silica as a yellow oil that did not crystallize. From ¹H NMR this appeared to be identical with **7a** in respect of the stereochemistry of the indanol ring. It could be the 4-methoxyphenyltetracarbonylmanganese analog of **7a**; or alternatively the 4-methoxyindanyl analog of **7a**. (Similar uncertainty over regioisomerism exists with the by-products formed (see below) from the manganation of the *meta*-chlorochalcone.) IR: ν (CO) 2082 (m), 1993 (vs, br), 1947 (s) cm⁻¹. ¹H NMR: δ 7.80–6.70 (m, 15H, H2", Ar–H), 6.02 (d, 1H, J = 15.7 Hz, H1"), 5.44 (d, 1H, J = 7.7 Hz, H2'), 4.71 (d, 1H, J = 7.7 Hz, H3'), 3.80 (s, 6H, (OMe)₂), 2.80 (s, 1H, OH). FAB–MS (*m/e*): 778 (M⁺, 2), 761 (M⁺-OH, 3), 750 (M⁺-CO, 2), 666 (M⁺-4CO, 100).

(k) Manganation of (E)-1-(3-chlorophenyl)-3-(2-trifluoromethylphenyl)prop-2-en-1-one. Reflux was continued for 7 h, and PLC (with dichloromethane/petroleum spirit 1:2) then gave four bands, at R_f 0.95, 0.90, 0.45 and 0.2, from which were obtained [6-chloro-2-[3-(2-trifluoromethylphenyl)prop-2-en-1-on- κO -yl] phenyl- κC^1]tetracarbonylmanganese (4k), [4-chloro-2-[3-(2-trifluoromethylphenyl)prop-2-en-1-on- κO -yl] phenyl- κC^1]tetracarbonylmanganese (4k'), and two dichloro analogs 7b of the dimethoxy compound 7a discussed above.

[6-Chloro-2-[3-(2-trifluoromethylphenyl)prop-2-en-1on- κ O-yl] phenyl- κ C¹]tetracarbonylmanganese **4k** (44%) was crystallized from petroleum spirit as small dark red crystals, m.p. 132°C. IR: ν (CO) 2085 (m), 1995 (vs, br), 1949 (s) cm⁻¹. ¹H NMR: δ 8.20 (dq, 1H, J = 15.4/2.0 Hz, H3'), 7.91 (d, 1H, J = 7.6 Hz, H3), 7.84 (d, 1H, J = 7.6 Hz, H6"), 7.77 (d, 1H, J = 7.6 Hz, H3"), 7.64 (t, 1H, J = 7.6 Hz, H4"), 7.57 (d, 1H, J = 7.6 Hz, H5), 7.56 (t, 1H, J = 7.6 Hz, H5"), 7.45 (d, 1H, J = 15.4 Hz, H2'), 7.18 (t, 1H, J = 7.6 Hz, H4). FAB-MS (m/e): 476 (M⁺, 44), 392 (M⁺-3CO, 80), 364 (M⁺-4CO, 100). Anal. Found: C, 50.61; H, 2.06. C₂₀ H₉F₃ClO₅Mn. Calc.: C, 50.40; H, 1.90.

[4-Chloro-2-[3-(2-trifluoromethylphenyl)prop-2-en-1on- κO -yl]phenyl- κC^1]tetracarbonylmanganese **4k**' (20%) was crystallized from petroleum spririt as small dark red crystals, m.p. 140 °C. IR: ν (CO) 2084 (m), 1997 (vs, br), 1942 (s) cm⁻¹. ¹H NMR: δ 8.23 (dq, 1H, J = 15.4/2.0 Hz, H3'), 8.10 (d, 1H, J = 7.9 Hz, H6), 7.98 (s, 1H, H3), 7.88 (d, 1H, J = 7.7 Hz, H6"), 7.78 (d, 1H, J = 7.7 Hz, H3"), 7.64 (t, 1H, J = 7.7 Hz, H4"), 7.57 (t, 1H, J = 7.7 Hz, H5"), 7.44 (d, 1H, J = 15.4 Hz, H2'), 7.43 (d, 1H, J = 7.9 Hz, H5). FAB-MS (m/e): 476 (M⁺, 8), 392 (M⁺-3CO, 24), 364 (M⁺-4CO, 100). Anal. Found: C, 50.40; H, 2.10. C₂₁H₁₂F₃O₆Mn. Calc.: C, 50.40; H, 1.90.

Compound **7b** (20%) crystallized as small yellow crystals, m.p. 108°C. From the similarities between the ¹H NMR spectra (especially the coupling between H2 and H3) of **7b** and **7a**, it is assumed that the stereochemistry of the indanyl ring for this compound (**7b**), is the same as that found for **7a**. IR: ν (CO) 2085 (m), 1999 (vs, br), 1943 (s) cm⁻¹. ¹H NMR: δ 8.24–6.73 (m, 15H, H2", Ar–H), 5.93 (d, 1H, J = 15.9 Hz, H1"), 5.48 (d, 1H, J = 7.8 Hz, H2'), 4.75 (d, 1H, J = 7.8 Hz, H3'), 2.99 (s, 1H, OH). FAB–MS (m/e): 786 (M⁺, 10), 769 (M⁺-OH, 10), 674 (M⁺-4CO, 100).

The other isomer of **7b** (15%) was crystallized as small yellow crystals, m.p. 90°C. IR: ν (CO) 2087 (m), 2000 (vs, br), 1951 (s) cm⁻¹. ¹H NMR: δ 8.06–6.76 (m, 15H, H2", Ar–H), 5.89 (d, 1H, J = 15.3 Hz, H1"), 5.48 (d, 1H, J = 7.2 Hz, H2'), 4.71 (d, 1H, J = 7.2 Hz, H3'), 2.82 (s, 1H, OH). FAB-MS (m/e): 786 (M⁺, 2), 769 (M⁺-OH, 8), 674 (M⁺-4CO, 100).

(l) Manganation of (E)-3-(2-trifluoromethylphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one. PLC (with dichloromethane/petroleum spirit 2:1) gave bands at $R_{\rm f}$ 0.35 and $R_{\rm f}$ 0.1. The first gave a mixture of [4,5,6-trimethoxy-2-[3-(2-trifluoromethylphenyl)prop-2en-1-on- κO -yl]phenyl- κC^1]tetracarbonylmanganese (41) and [[1-(2-trifluoromethylphenyl)-2-(3,4,5-trimethoxyphenyl)carbonyl- κO]ethenyl- κC^1]tetracarbonylmanganese (31) as a red oil. When the oil was crystallized, 41 separated first as small ruby-red crystals (52%), m.p. 134°C. IR: ν (CO) 2080 (m), 1992 (vs, br), 1943 (s) cm⁻¹. ¹H NMR: δ 8.12 (dq, 1H, J = 15.4/2.0 Hz, H3'), 7.82 (d, 1H, J = 7.6 Hz, H6"), 7.76 (d, 1H, J = 7.6 Hz, H3"), 7.64 (t, 1H, J = 7.6 Hz, H4"), 7.54 (t, 1H, J = 7.6 Hz, H5"), 7.40 (s, 1H, H3), 7.32 (d, 1H, J = 15.4 Hz, H2'), 4.08 (s, 3H, 6-OMe), 3.93 (s, 3H, 5-OMe), 3.91 (s, 3H, 4-OMe). FAB-MS (m/e): 532 (M⁺, 5), 504 (M⁺-CO, 2), 448 (M⁺-3CO, 9), 420 (M⁺-4CO, 100). Anal. Found: C, 52.17; H, 3.15. C₂₃H₁₆F₃O₈Mn. Calc.: C, 51.90; H, 3.03.

A second fraction, [[1-(2-trifluoromethylphenyl)-2-(3,4,5-trimethoxyphenyl)carbonyl- κO]ethenyl- κC^{1}]tetracarbonylmanganese (**31**) crystallized as chunky orange crystals (35%), m.p. 127°C. IR: ν (CO) 2088 (m), 1996 (vs, br), 1949 (m) cm⁻¹. ¹H NMR: δ 7.73 (d, 1H, J = 7.4 Hz, H3"), 7.63 (s, 1H, H2), 7.59 (t, 1H, J = 7.4Hz, H5"), 7.35 (t, 1H, J = 7.4 Hz, H4"), 7.34 (d, 1H, J = 7.4 Hz, H6"), 7.24 (s, 2H, H2', 6'), 3.94 (s, 3H, 4'-OMe), 3.93 (s, 6H, 3', 5'-(OMe)₂). FAB-MS (m/e): 532 (M⁺, 20), 504 (M⁺-CO, 20), 448 (M⁺-3CO, 30), 420 (M⁺-4CO, 100). Anal. Found: C, 52.40; H, 3.28. C₂₃H₁₆F₃O₈Mn. Calc.: C, 51.90; H, 3.03.

The band at R_f 0.1 gave [2-(1-hydroxy-1-((*E*)-2-(2trifluoromethylphenyl)-ethenyl)-3-(2-trifluoromethylphenyl)-4,5,6-trimethoxy-2-indanylcarbonyl- κ O)-4,5, 6-trimethoxyphenyl- κC^1]tetracarbonylmanganese (7c) as a yellow oil (12%). This was crystallized as small vellow crystals, m.p. 110°C. The stereochemistry in the indanyl ring is not defined. IR: ν (CO) 2082 (m), 1995 (vs, br), 1944 (s) cm⁻¹. ¹H NMR: δ 7.66 (d, 1H, J = 7.8 Hz, Ar-H), 7.40 (m, 7H, Ar-H), 7.01 (d, 1H, J = 15.7 Hz, H2"), 6.54 (s, 1H, Ar-H), 5.70 (d, 1H, J = 15.7 Hz, H1"), 5.51 (d, 1H, J = 7.5 Hz, H2'), 4.36 (d, 1H, J = 7.5 Hz, H3'), 3.99 (s, 3H, OMe), 3.84 (s, 9H, (OMe)₃), 3.77 (s, 3H, OMe), 3.48 (s, 3H, OMe), 2.54 (s, 1H, OH). FAB-MS (m/e): 899 (M⁺, 2), 882 (M⁺-OH, 4), 871 (M⁺-CO, 6), 787 (M⁺-4CO, 100). Anal. Found: C, 56.21; H, 3.84. C₄₂ H₃₃F₆O₁₂ Mn. Calc.: C, 56.14; H, 3.70.

(m) Manganation of (E)-1-phenyl-3-(2-trifluoromethylphenyl)prop-2-en-1-one. PLC (with dichloromethane/ petroleum spirit 2:1) gave two bands at R_f 0.95 and R_f 0.5. The band at R_f 0.95 gave a mixture (3:2 by NMR spectroscopy) of [2-[3-(2-trifluoromethylphenyl)prop-2en-1-on- κO -yl]phenyl- κC^1]tetracarbonylmanganese (4m) and [[1-(2-trifluoromethylphenyl)-2-phenylcarbonyl- κO]ethenyl- κC^1]tetracarbonylmanganese (3m) as a red oil (57%). Crystallization by the diffusion method (dichloromethane, pentane) gave mostly [2-[3-(2-trifluoromethylphenyl)prop-2-en-1-on- κO -yl]phenyl- κC^{1} tetracarbonylmanganese (4m). The latter, when further purified by recrystallization, gave small red crystals, m.p. 137°C. IR: ν (CO) 2081 (m), 1995 (vs, br), 1938 (s) cm⁻¹. ¹H NMR: δ 8.20 (dq, 1H, J = 15.2/2.0 Hz, H3'), 8.19 (d, 1H, J = 7.3 Hz, H6), 8.03 (d, 1H, J = 7.3 Hz, H3), 7.85 (d, 1H, J = 7.7 Hz, H6"), 7.77 (d, 1H, J = 7.7 Hz, H3"), 7.64 (t, 1H, J = 7.7 Hz, H4"), 7.55 (t, 1H, J = 7.7 Hz, H5"), 7.49 (d, 1H, J = 15.2 Hz, H2', 7.45 (t, 1H, J = 7.3 Hz, H4), 7.22 (t, J = 7.3 Hz, H4), 7.23 (t, J = 7.3 Hz), 7.23 (t, J = 7.3 Hz), 7.3 (t, J1H, J = 7.3 Hz, H5). FAB-MS (m/e): 442 (M⁺, 7), 358 (M⁺-3CO, 29), 329 (M⁺-4CO, 100). Anal. Found: C, 54.34; H, 2.29. C₂₀H₁₀F₃O₅Mn. Calc.: C, 54.32; H, 2.28.

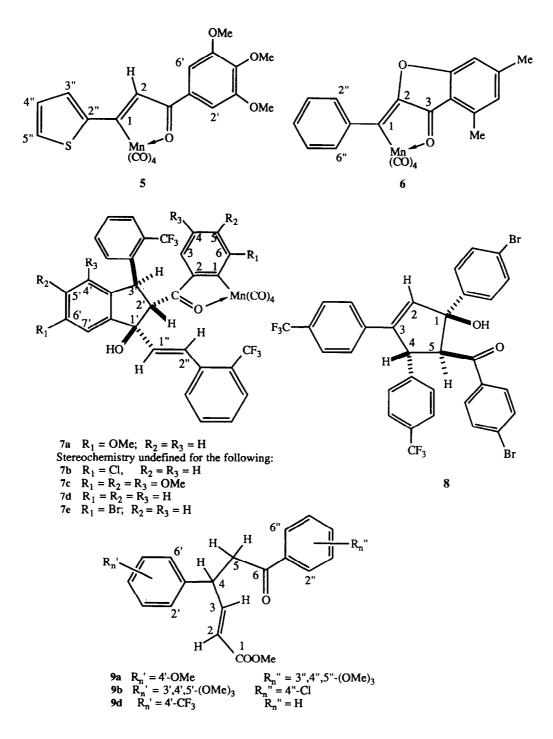
[[1-(2-Trifluoromethylphenyl)-2-phenylcarbonyl- κO]ethenyl- κC^1]tetracarbonylmanganese (**3m**) crystallized as a second fraction as chunky orange crystals, m.p. 111°C. IR: ν (CO) 2088 (m), 1997 (vs, br), 1949 (s) cm⁻¹. ¹H NMR: δ 8.01 (d, 2H, J = 7.4 Hz, H2', 6'), 7.73 (d, 1H, J = 8.0 Hz, H3"), 7.68 (s, 1H, H2), 7.59 (m, 2H, H4', H5"), 7.49 (t, 2H, J = 7.6 Hz, H3', 5'), 7.35 (m, 2H, H4", H6"). FAB-MS (m/e): 442 (M⁺, 7), 358 (M⁺-3CO, 27), 329 (M⁺-4CO, 100). Anal. Found: C, 54.84; H, 2.50. $C_{20}H_{10}F_3O_5Mn$. Calc.: C, 54.32; H, 2.28.

The band at R_f 0.5 gave yellow crystals identified by spectroscopy as [2-(1-hydroxy-1-((*E*)-2-(2-trifluoromethylphenyl)-ethenyl)-3-(2-trifluoromethylphenyl)-2indanylcarbonyl- κO)phenyl- κC^1]tetracarbonylmanganese **7d** (25%), m.p. 107°C. The stereochemistry in the indanyl ring is not defined. IR: ν (CO) 2083 (m), 1996 (vs), 1993 (sh), 1938 (s) cm⁻¹. ¹H NMR: δ 7.50 (m, 17H, H2", Ar–H), 5.98 (d, 1H, J = 15.5 Hz, H1"), 5.55 (d, 1H, J = 7.5 Hz, H2'), 4.77 (d, 1H, J = 7.5 Hz, H3'), 2.87 (s, 1H, OH). FAB–MS (m/e): 718 (M⁺, 3), 701 (M⁺-OH, 5), 606 (M⁺-4CO, 100).

(n) Manganation of (E)-1-(4-bromophenyl)-3-(2-trifluoromethylphenyl)prop-2-en-1-one. PLC (with dichloromethane/petroleum spirit 2:1) gave two bands at $R_{\rm f}$ 0.9 and 0.5. The band at R_f 0.9 gave a mixture (3:2 by NMR) of [5-bromo-2-[3-(2-trifluoromethylphenyl)prop-2-en-1-on- κO -yl]phenyl- κC^1]tetracarbonylmanganese (4n) and [[1-(2-trifluoromethylphenyl)-2-(4bromophenyl)carbonyl- κO]ethenyl- κC^1]tetracarbonylmanganese (3n) as a red oil (72%). This oil was crystallized, giving mostly [5-bromo-2-[3-(2-trifluoromethylphenyl)prop-2-en-1-on- κO -yl]phenyl- κC^{1}]tetracarbonylmanganese (4n) which after further recrystallization gave ruby red crystals, m.p. 139°C. IR: ν (CO) 2085 (m), 1998 (vs, br), 1942 (s) cm⁻¹. ¹H NMR: δ 8.31 (d, 1H, J = 1.8 Hz, H6), 8.21 (dq, 1H, J =15.4/2.0 Hz, H3'), 7.84 (m, 2H, H3, H6"), 7.79 (d, 1H, J = 7.6 Hz, H3"), 7.64 (t, 1H, J = 7.6 Hz, H4"), 7.56 (t, 1H, J = 7.6 Hz, H5"), 7.42 (d, 1H, J = 15.4 Hz, H2'), 7.36 (dd, J = 8.3/1.8 Hz, H4). FAB-MS (m/e): 521 (M⁺, 20), 437 (M⁺-3CO, 80), 408 (M⁺-4CO, 100). Anal. Found: C, 46.43; H, 1.84. C₂₀H₉F₃BrO₅Mn. Calc.: C, 46.10; H, 1.74.

[[1-(2-Trifluoromethylphenyl)-2-(4-bromophenyl)carbonyl- κO]ethenyl- κC^{1}]tetracarbonylmanganese (3n) crystallized as a second fraction as chunky orange crystals, m.p. 130°C. IR: ν (CO) 2088 (m), 1998 (vs, br), 1951 (s) cm⁻¹. ¹H NMR: δ 7.86 (d, 2H, J = 8.6 Hz, H2', 6'), 7.73 (d, 1H, J = 7.5 Hz, H3"), 7.64 (s, 1H, H2), 7.63 (d, 2H, J = 8.6 Hz, H3', 5'), 7.59 (t, 1H, J = 7.5 Hz, H5"), 7.35 (m, 2H, H4", H6"). FAB-MS (m/e): 521 (M⁺, 10), 437 (M⁺-3CO, 30), 408 (M⁺-4CO, 100). Anal. Found: C, 45.81; H, 1.71. C₂₀H₉F₃BrO₅Mn. Calc.: C, 46.10; H, 1.74.

The band at R_f 0.5 gave [2-(1-hydroxy-1-((*E*)-2-(2-trifluoromethylphenyl)-ethenyl)-3-(2-trifluoromethylphenyl)-5-bromo-2-indanylcarbonyl- κO)-5-bromophenyl- κC^1]tetracarbonylmanganese (7e) as a yellow oil (23%), which was crystallized to give small yellow crystals, m.p. 167°C. IR: ν (CO) 2086 (m), 1999 (vs, br), 1944 (s) cm⁻¹. ¹H NMR: δ 8.17 (s, 1H, Ar-H), 7.94 (d, 1H, J = 8.3 Hz, Ar-H), 7.69 (d, 1H, J = 7.5 Hz, Ar–H), 7.40 (m, 10H, Ar–H), 7.00 (s, 1H, Ar–H), 6.82 (d, 1H, J = 15.7 Hz, H2"), 5.89 (d, 1H, J = 15.7 Hz, H1"), 5.48 (d, 1H, J = 7.9 Hz, H2'), 4.66 (d, 1H, J = 7.9 Hz, H3'), 2.76 (s, 1H, OH). FAB–MS (m/e): 876 (M⁺, 6), 859 (M⁺-OH, 16), 764 (M⁺-4CO, 100). Anal. Found: C, 49.46; H, 2.41. C₃₆H₁₉F₆Br₂O₆Mn. Calc.: C, 49.34; H, 2.19.


(o) Manganation of (E)-1-(4-bromophenyl)-3-(4-trifluoromethylphenyl)prop-2-en-1-one. PLC (with dichloromethane/petroleum spirit 2:1) gave two bands at R_f 0.95 and R_f 0.3, which yielded [[1-(4-trifluoromethylphenyl)-2-(4-bromophenyl)carbonyl- κO]ethenyl- κC^1]tetracarbonylmanganese (**30**) and (1S*,4S*,5R*)-5-(4-bromobenzoyl)-1-(4-bromophenyl)-3,4-di-(4-trifluoromethylphenyl)cyclopent-2-en-1-ol (**8**) respectively.

[[1-(4-Trifluoromethylphenyl)-2-(4-bromophenyl)carbonyl- κO]ethenyl- κC^1]tetracarbonylmanganese **30** (72%) was crystallized as small red crystals, m.p. 103°C. IR: ν (CO) 2085 (m), 2000 (vs, br), 1947 (s) cm⁻¹. ¹H NMR: δ 7.89 (d, 2H, J = 8.7 Hz, H2', 6'), 7.70 (d, 2H, J = 8.1 Hz, H3", 5"), 7.67 (s, 1H, H2), 7.65 (d, 2H, J = 8.7 Hz, H3', 5'), 7.49 (d, 2H, J = 8.1 Hz, H2", 6"). FAB-MS (m/e): 521 (M⁺, 20), 437 (M⁺-3CO, 40), 409 (M⁺-4CO, 100). Anal. Found: C, 46.50; H, 1.94. C₂₀H₉F₃BrO₅Mn. Calc.: C, 46.10; H, 1.74.

(1S^{*}, 4S^{*}, 5R^{*})-5-(4-Bromobenzoyl)-1-(4-bromophenyl)-3,4-di-(4-trifluoro-methylphenyl)cyclopent-2-en-1-ol **8** (10%) was crystallized as colorless chunky crystals, m.p. 176°C. ¹H NMR: δ 7.49 (m, 8H, Ar–H), 7.26 (m, 8H, Ar–H), 6.34 (d, 1H, J = 2.0 Hz, H2), 5.51 (dd, 1H, J = 6.9/2.0 Hz, H4), 4.21 (d, 1H, J = 6.9 Hz, H5), 2.89 (s, 1H, OH). ¹³C NMR: δ 197.6 (s, CO), 146.6 (s), 145.9 (s), 143.4 (s), 137.1 (s), 135.7 (s), 134.5 (d, C4), 131.7 (d), 130.2 (d), 129.1 (s, C3), 127.8 (d), 127.3 (d), 126.3 (d, J = 3.3 Hz), 125.7 (d, J = 4.1Hz), 121.9 (s), 85.8 (s, C5), 68.9 (d, C1), 52.6 (d, C2). This compound was further characterized by a singlecrystal X-ray structure determination (see below).

(p) Manganation of (E)-3-(4-trifluoromethylphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one. PLC (with dichloromethane/petroleum spirit 2:1) gave one major band at R_f 0.6, from which crude [[1-(4-trifluoromethylphenyl)-2-(3,4,5-trimethoxyphenyl)carbonyl- κO]ethenyl- κC^1]tetracarbonylmanganese (**3p**) was obtained as a red oil (75%). Crystallization gave small orange crystals, m.p. 120°C. IR: ν (CO) 2084 (m), 1997 (vs), 1946 (s) cm⁻¹. ¹H NMR: δ 7.70 (d, 2H, J = 8.0 Hz, H3", 5"), 7.65 (s, 1H, H2), 7.50 (d, 2H, J = 8.0 Hz, H2", 6"), 7.26 (s, 2H, H2', 6'), 3.95 (s, 3H, 4'-OMe), 3.94 (s, 6H, 3', 5'-(OMe)_2). FAB-MS (m/e): 532 (M⁺, 4), 504 (M⁺-CO, 4), 448 (M⁺-3CO, 15), 420 (M⁺-4CO, 100). Anal. Found: C, 52.28; H, 3.19; F, 10.60. C₂₃H₁₆F₃O₈Mn. Calc.: C, 51.90; H, 3.03; F, 10.71. Also evident from the NMR spectrum of the red oil was a small amount (about 10%) of the ring-manganated product [4,5,6-trimethoxy-2-[3-(2-trifluoromethyl-phenyl)prop-2-en-1-on- κO -yl]phenyl- κC^1]tetracarbon-ylmanganese (**4p**). A few small red crystals (m.p. 136°C) were obtained on crystallization, but the amount was too small to allow full characterization.

(q) Manganation of (E)-1-(4-chlorophenyl)-3-(4-trifluoromethylphenyl)prop-2-en-1-one. Column chromatography gave as a red oil [[1-(4-trifluoromethylphenyl)-2-(4-chlorophenyl)carbonyl- κO]ethenyl- κC^1]tetracarbonylmanganese **3q** (94%), which crystallized from petroleum spirit as dark orange crystals, m.p. 115°C. IR: ν (CO) 2085 (m), 2000 (vs, br), 1947 (s) cm⁻¹. ¹H NMR: δ 7.97 (d, 2H, J = 8.5 Hz, H2', 6'), 7.72 (s, 1H, H2), 7.71 (d, 2H, J = 8.3 Hz, H3", 5"), 7.67 (s, 1H, H2), 7.49 (d, 2H, J = 8.3 Hz, H2", 6"), 7.48 (d, 2H, J = 8.5 Hz, H3', 5'). Anal. Found: C, 50.47; H, 1.87. C₂₀H₉F₃ClO₅Mn. Calc.: C, 50.40; H, 1.90.

(r) Manganation of (E)-1-phenyl-3-(4-trifluoromethylphenyl)prop-2-en-1-one. Column chromatography gave as a red oil [[1-(4-trifluoromethylphenyl)-2-(4-chlorophenyl)carbonyl- κO]ethenyl- κC^1]tetracarbonylmanganese **3r** (88%), which crystallized from petroleum spirit as small orange crystals, m.p. 125°C. IR: ν (CO) 2085 (m), 1999 (vs, br), 1947 (s) cm⁻¹. ¹H NMR δ 8.04 (d, 2H, J = 7.4 Hz, H2', 6'), 7.72 (s, 1H, H2), 7.71 (d, 2H, J = 8.2 Hz, H3", 5"), 7.61 (d, 1H, J = 7.4 Hz, H4'), 7.51 (m, 4H, H3', 5', H2", 6"). Anal. Found: C, 54.37; H, 2.28. C₂₀H₁₀F₃O₅Mn. Calc.: C, 54.32; H, 2.28.

(s) Manganation of (E)-3-(2-thienyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one. PLC (with dichloromethane/petroleum spirit 2:1) gave one major band at R_f 0.6 from which was obtained [[1-(2-thienyl)-2-(3,4,5-trimethoxyphenyl)carbonyl- κO]ethenyl κC^1]tetracarbonylmanganese (5) as a red oil (57%), which was recrystallized as small orange crystals, m.p. 137°C. IR: ν (CO) 2085 (m), 2000 (vs), 1939 (s) cm⁻¹. ¹H NMR: δ 7.79 (s, 1H, H2), 7.73 (dd, 1H, J = 3.8/1.0 Hz, H3" or H5"), 7.56 (dd, 1H, J = 5.1/1.0 Hz, H3" or H5"), 7.22 (s, 2H, H2', 6'), 7.20 (m, 1H, H4"), 3.96 (s, 6H, 3', 5'-(OMe)₂), 3.93 (s, 3H, 4'-OMe). FAB-MS (m/e): 470 (M⁺, 7), 442 (M⁺-CO, 3), 386 (M⁺-3CO, 17), 358 (M⁺-4CO, 100). Anal. Found: C, 51.29; H, 3.09; S, 6.51. C₂₀H₁₅SO₈Mn. Calc.: C, 51.08; H, 3.21; S, 6.80.

(t) Manganation of (Z)-4,6-dimethylbenzylidenecoumaranone. PLC (with dichloromethane / petroleum spirit 1:3) gave one major band at R_f 0.5, from which [[4,6-dimethylbenzo[d]furan-3(5H)-on- κ O-2-ylidene]phenyl]methyl]tetracarbonylmanganese **6** (58%) was obtained. Crystallization from petroleum spirit gave small orange crystals, m.p. 139°C. IR: ν (CO) 2086 (m), 2003 (vs, br), 1944 (s) cm⁻¹. ¹H NMR: δ 7.63 (d, 2H, J = 7.6 Hz, H2", 6"), 7.48 (t, 2H, J = 7.6 Hz, H3", 5"), 7.36 (d, 1H, J = 7.6 Hz, H4"), 6.85 (s, 1H, H5), 6.74 (s, 1H, H7), 2.57 (s, 3H, 4-Me), 2.41 (s, 3H, 6-Me). Anal. Found: C, 60.70; H, 3.13. C₂₁H₁₃O₆Mn. Calc.: C, 60.59; H, 3.15.

2.3. Reactions of cyclomanganated chalcones with alkenes

Reaction of $[[1-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenylcarbonyl-<math>\kappa O$]ethenyl- $\kappa C'$]tetracarbonylmanganese **3e** with methyl acrylate in carbon tetrachloride. A solution of **3e** (0.218 g, 0.44 mmol) and methyl acrylate (0.22 ml, 2.44 mmol) in nitrogen-saturated carbon tetrachloride (20 ml) was refluxed for 5 h. Carbon tetrachloride was removed under vacuum and the residual oil was chromatographed (PLC, ethyl acetate/petroleum spirit 0.9:1) to give one major band at R_f 0.7. This gave methyl (E)-4-(4-methoxyphenyl)-6-oxo-6-(3,4,5-tri-

methoxyphenyl)hex-2-enoate (9a) as a pale yellow oil (0.176 g, 96%), which was crystallized from pentane as fibrous white crystals, m.p. 77°C. IR: 1721 (s, CO), 1711 (s, COOMe) cm⁻¹. ¹H NMR: δ 7.16 (d, 2H, J = 8.7 Hz, H2', 6'), 7.15 (s, 2H, H2", 6"), 7.14 (dd, 1H, J = 15.7/6.9 Hz, H3), 6.85 (d, 2H, J = 8.7 Hz, H3', 5'), 5.78 (dd, 1H, J = 15.7/1.4 Hz, H2), 4.24 (ddd, 1H, J = 7.0/6.9/1.4 Hz, H4), 3.89 (s, 9H, 4', 3'', 3'') $5''-(OMe)_3$, 3.77 (s, 3H, 4''-OMe), 3.69 (s, 3H, COOMe), 3.38 (d, 2H, J = 7.0 Hz, CH₂). ¹³C NMR: δ 196.0 (s, C1), 166.9 (s, C6), 158.7 (s, C4'), 153.1 (s, C3", 5"), 150.8 (d, C3), 142.9 (s, C4"), 133.2 (s, C1'), 132.1 (s, C1"), 128.9 (d, C2', 6'), 120.8 (d, C2), 114.3 (d, C3', 5'), 105.7 (d, C2", 6"), 60.9 (g, 4"-OMe), 56.4 $(q, 3'', 5''-(OMe)_2), 55.3 (q, 4'-OMe), 51.44(q, COOMe),$ 43.4 (t, C5), 42.4 (d, C4). MS (m/e): 414 (M⁺, 7), 340 $(M^+-Me-COOMe, 30), 195 ((MeO)_3C_6H_2CO^+ (100)).$ Anal. Found: C, 66.64; H, 6.47. C₂₃H₂₆O₇. Calc: C, 66.65; H, 6.32.

Reaction of [[1-(4-methoxyphenyl)-2-(3,4,5-trimethoxy $phenylcarbonyl-<math>\kappa O$)]ethenyl- κC^{1}]tetracarbonylmanganese (3e) with methyl acrylate in acetonitrile. A solution of 3e (0.258 g, 0.52 mmol) and methyl acrylate (0.25 ml, 2.78 mmol) in nitrogen-saturated acetonitrile (20 ml) was refluxed for 2 h. Acetonitrile was removed under vacuum and the residual oil was chromatographed (PLC., ethyl acetate / petroleum spirit (1:1)) to give two bands at R_f 0.7 and R_f 0.5. The first gave methyl (E)-4-(4-methoxyphenyl)-6-oxo-6-(3,4,5-trimethoxyphenyl)hex-2-enoate (9a) (0.054 g, 25%), while the band at R_f 0.5 gave the butenolide 5-(2-methoxycarbonylethyl)-3-(4-methoxyphenyl)-5-(3,4,5-trimetho xyphenyl)furan-2(5H)-one (10a) as a colorless oil, which

xyphenyl)furan-2(5H)-one (10a) as a colorless oil, which crystallized (ether/pentane) as small translucent crystals, m.p. 106°C. IR: 1758 (vs, CO), 1735 (s, COOMe) cm⁻¹. ¹H NMR: δ 7.79 (d, 2H, J = 8.3 Hz, H2", 6"), 7.57 (s, 1H, H4), 6.89 (d, 2H, J = 8.3 Hz, H3", 5"), 6.62 (s, 2H, H2^{'''}, 6^{'''}), 3.86 (s, 6H, 3^{'''}, 5^{'''}-(OMe)₂), 3.80 (s, 6H, 4", 4"'-(OMe)₂), 3.56 (s, 3H, COOMe), 2.40 (m, 4H, CH_2CH_2). ¹³C NMR: δ 173.3 (s, C3'), 171.0 (s, C2), 160.3 (s, C4"), 153.7 (s, C3", 5"'), 148.1 (d, C4), 137.9 (s, C4"'), 134.5 (s, C1"), 129.4 (s, C1"'), 128.6 (d, C2", 6"), 121.6 (s, C3), 114.1 (d, C3", 5"), 102.2 (d, C2", 6"), 87.3 (s, C5), 60.9 (q, 4"'-OMe), 56.4 $(q, 3''', 5'''-(OMe)_2)$, 55.4 (q, 4''-OMe), 51.8 (q, 4''-OMe)COOMe), 35.2 (t, C1'), 28.5 (t, C2'). MS (m/e): 442 $(M^+, 7)$, 355 $(M^+-CH_2CH_2COOMe, 45)$, 327 $(M^+-$ CH₂CH₂COOMe-CO, 44), 299 (M⁺-CH₂CH₂COOMe-2CO, 48) 195 ((MeO)₃C₆H₂CO⁺, 100). Anal. Found: C, 65.15; H, 5.95. C₂₄H₂₆O₈. Calc.: C, 65.15; H, 5.93.

Reaction of [[1-(3,4,5-trimethoxyphenyl)-2-(4-chloro $phenylcarbonyl-<math>\kappa O$]ethenyl- κC^{1}]tetracarbonylmanganese (3i) with methyl acrylate in carbon tetrachloride. Similarly, 3i (0.102 g, 0.20 mmol) and methyl acrylate (0.1 ml, 1.11 mmol) were dissolved in nitrogen-saturated carbon tetrachloride (20 ml) and the solution was refluxed overnight. PLC (with ethyl acetate/petroleum spirit 2:3) gave one major band at R_f 0.7, from which methyl (E)-6-(4-chlorophenyl)-6-oxo-4-(3,4,5-trimethoxyphenyl)hex-2-enoate 9b (0.037 g, 43%) was obtained. It crystallized from pentane as cream crystals, m.p. 101°C, and was identified by spectral correlation with **9a**. IR: 1726 (s, CO), 1712 (s, COOMe) cm^{-1} . ¹H NMR: δ 7.85 (d, 2H, J = 6.8 Hz, H2", 6"), 7.42 (d, 2H, J = 6.8 Hz, H3", 5"), 7.10 (dd, 1H, J = 15.7/7.0Hz, H3), 6.42 (s, 2H, H2', 6'), 5.81 (dd, 1H, J =15.7/1.4 Hz, H2), 4.20 (ddd, 1H, J = 7.0/6.9/1.4 Hz, H4), 3.82 (s, 6H, 3', 5'-(OMe)₂), 3.80 (s, 3H, 4'-OMe), 3.70 (s, 3H, COOMe), 3.39 (d, 2H, J = 6.9 Hz, CH₂). ¹³C NMR: δ 196.0 (s, C1), 166.9 (s, C6), 153.6 (s, C3', 5'), 150.0 (d, C3), 139.9 (s, C4"), 137.3 (s, C4'), 136.7 (s, C1'), 135.1 (s, C1"), 129.5 (d, C2", 6" or C3", 5"), 129.1 (d, C2", 6" or C3", 5"), 121.2 (d, C2), 104.9 (d, C2', 6'), 60.9 (q, 4'-OMe), 56.2 (q, 3', 5'-(OMe)₂), 51.6 (q, COOMe), 43.5 (t, C5), 43.3 (d, C4). MS (m/e): 418 $(M^+, 20), 344 (M^+-MeCOOMe, 35), 205 (45), 139$ $(ClC_6H_4CO^+, 100).$

Reaction of [[1-(3,4,5-trimethoxyphenyl)-2-(4-chlorophenylcarbonyl- κO]ethenyl- κC^{1}]tetracarbonylmanganese (3i) with methyl acrylate in acetonitrile. Similarly, a solution of 3i (0.115 g, 0.23 mmol) and methyl acrylate (0.1 ml, 1.11 mmol) in nitrogen-saturated acetonitrile (20 ml) was refluxed for 3 h. PLC (with ethyl acetate / petroleum spirit 2:3) gave two bands at $R_f 0.7$ and R_f 0.5. From the band at R_f 0.7, methyl (E)-6-(4chlorophenyl)-6-oxo-4-(3,4,5-trimethoxyphenyl)hex-2enoate (9b) was obtained as a pale yellow oil (0.014 g, 14%), as confirmed by ¹H NMR. The band at $R_f 0.5$ gave the butenolide 5-(4-chlorophenyl)-5-(2-methoxycarbonylethyl)-3-(3,4,5-trimethoxyphenyl)furan-2(5H)one (10b) as a colorless oil (0.037 g, 36%), which crystallized (ether / pentane) as small white fibrous crystals, m.p. 63 °C. IR: 1762 (vs, CO), 1735 (s, COOMe) cm^{-1} . ¹H NMR: δ 7.58 (s, 1H, H4), 7.39 (s, 4H, H2^{'''}, 6", H3", 5"), 7.09 (s, 2H, H2", 6"), 3.89 (s, 6H, 3", 5"-(OMe)₂), 3.86 (s, 3H, 4"-OMe), 3.60 (s, 3H, COOMe), 2.44 (m, 4H, CH₂-2, 3). ¹³C NMR: δ 173.1 (s, C3'), 170.4 (s, C2), 153.4 (s, C3", 5"), 149.1 (d, C4), 139.6 (s, C4"'), 137.2 (s, C4"), 134.5 (s, C1"), 129.9 (s, C1""), 129.3 (d, C2"", 6""), 126.4 (d, C3"", 5""), 124.3 (s, C3), 104.6 (d, C2", 6"), 86.8 (s, C5), 61.0 (q, 4"-OMe), 56.3 (q, 3", 5"-OMe), 51.9 (q, COOMe), 34.2 (t, C1'), 28.4 (t, C2'). MS (m/e): 446 (M⁺, 60), 359 (M⁺-CH₂CH₂COOMe, 45), 303 (M⁺-CH₂CH₂COOMe-2CO, 48), 139 (ClC₆ H₄CO⁺, 100).

Reaction of [[1-(3,4,5-trimethoxyphenyl)-2-(4-chloro $phenylcarbonyl-<math>\kappa O$]ethenyl- κC^{1}]tetracarbonylmanganese (3i) with acrolein in acetonitrile. Similarly, 3i (0.145 g, 0.29 mmol) and acrolein (0.15 ml, 2.27 mmol) were dissolved in nitrogen-saturated acetonitrile (20 ml) and the solution was refluxed for 1 h. PLC (ethyl acetate / petroleum spirit (1:2)) gave one major band at R_f 0.3, which yielded 5-(4-chlorophenyl)-5-(2-formylethyl)-3-(3,4,5-trimethoxyphenyl)furan-2(5H)-one 10c (0.055 g, 46%). This crystallized (ether/pentane) as white needles, m.p. 62°C. IR: 1762 (vs, CO), 1735 (s, CHO). ¹H NMR: δ 9.71 (s, 1H, H3'), 7.58 (s, 1H, H4), 7.38 (s, 4H, H2", 6", H3", 5"), 7.09 (s, 2H, H2", 6"), 3.88 (s, 6H, 3", 5"-(OMe)₂), 3.85 (s, 3H, 4"-OMe), 2.50 (m, 4H, CH₂-2, 3). ¹³C NMR: δ 200.2 (d, C3'), 171.1 (s, C2), 153.4 (s, C3", 5"), 149.3 (d, C4), 139.6 (s, C4"'), 137.1 (s, C4"), 134.5 (s, C1"), 129.7 (s, C1"'), 129.3 (d, C2"'', 6"''), 126.4 (d, C3"'', 5"''), 124.2 (s, C3), 104.6 (d, C2", 6"), 86.7 (s, C4), 60.4 (q, 4"-OMe), 56.3 $(q, 3'', 5''-(OMe)_2), 38.2$ (t, C1'), 31.6 (t, C2'). MS (m/e): 416 (M⁺, 58), 359 (M⁺-CH₂CH₂CHO, 79), $303 (M^+-CH_2CH_2COOMe-2CO, 75), 139 (ClC_6H_4O^+, ClC_6H_4O^+)$ 100).

Reaction of [[1-(4-trifluoromethylphenyl)-2-phenylcarbonyl- κO]ethenyl- κC^{1}]tetracarbonylmanganese (3r) with methyl acrylate in carbon tetrachloride. A solution of 3r (0.17 g, 0.38 mmol) and methyl acrylate (0.1 ml, 1.11 mmol) in carbon tetrachloride (20 ml) was heated under reflux for 6 h. The major PLC band was methyl (E)-6-oxo-6-phenyl-4-(4-trifluoromethylphenyl)hex-2enoate 9d (0.037 g, 43%), which crystallized from pentane as small white fibrous crystals, m.p. 62°C. IR: 1721 (s, CO), 1688 (s, COOMe) cm⁻¹. ¹H NMR: δ 7.92 (d, 2H, J = 8.0 Hz, H2", 6"), 7.58 (m, 3H, H3', 5', H4"), 7.45 (t, 2H, J = 8.0 Hz, H3", 5"), 7.38 (d, 2H, J = 8.1 Hz, H2', 6'), 7.13 (dd, 1H, J = 15.7/7.0 Hz, H3), 5.81 (dd, 1H, J = 15.7/1.3 Hz, H2), 4.39 (ddd, 1H, J = 7.0/7.0/1.3 Hz, H4), 3.71 (s, 3H, COOMe), 3.50 (d, 2H, J = 7.0 Hz, CH₂). ¹³C NMR: δ 196.5 (s, C1), 166.7 (s, C6), 149.4 (d, C3), 145.3 (s, C1'), 136.6 (s, C1"), 133.6 (d, C4"), 129.4 (s, $J_{C-F} = 12.7 \text{ Hz}, \text{C4'})$, 128.8 (d, C3", 5"), 128.4 (d, C2', 6'), 128.0 (d, C2", 6"), 125.8 (d, $J_{C-F} = 3.7$ Hz, C3', 5'), 121.8 (d, C2), 51.7 (q, COOMe), 43.2 (t, C5), 42.7 (d, C4). MS (m/e): 362 (M⁺, 1), 288 (M⁺-MeCOOMe, 15), 105 (PhCO⁺, 100). Anal. Found: C, 65.92; H, 4.77. C₂₀H₁₇F₃O₃. Calc.: C, 66.30; H, 4.73.

Reaction of [[1-(4-trifluoromethylphenyl)-2-phenyl $carbonyl-<math>\kappa O$]ethenyl- κC^1]tetracarbonylmanganese (3r) with methyl acrylate in acetonitrile. The corresponding reaction of 3r (0.21 g, 0.47 mmol) and methyl acrylate (0.15 ml, 1.67 mmol) in refluxing acetonitrile (20 ml) for 1.5 h gave on chromatography (PLC, diethyl ether/ petroleum spirit 1:2) two bands at R_f 0.5 and R_f 0.4. The band at R_f 0.5 gave methyl (E)-6-oxo-6-phenyl-4-(4-trifluoromethylphenyl)hex-2-enoate (9d) as a light yellow oil (0.053 g, 31%). The band at R_f 0.4 gave 5-(2-methoxycarbonylethyl)-3-phenyl-5-(4-trifluoromethylphenyl)furan-2(5H)-one (10d) as a colorless oil (0.092 g, 49%), which crystallized (ether/pentane) as small white fibrous crystals, m.p. 55°C. IR: 1763 (vs, CO), 1736 (s, COOMe) cm⁻¹. ¹H NMR: δ 7.96 (d, 2H, J = 8.3 Hz, H2", 6"), 7.85 (s, 1H, H3), 7.65 (d, 2H, J = 8.3 Hz, H3", 5"), 7.42 (m, 5H, H2", 6", H3", 5", H4""), 3.58 (s, 3H, COOMe), 2.46 (m, 4H, CH₂-2, 3). ¹³C NMR: δ 173.1 (s, C3'), 170.1 (s, C1), 152.5 (d, C3), 138.2 (s, C1"), 132.5 (s, C1"'), 129.2 (d, C3"', 5"'), 128.9 (s, C2), 128.6 (d, C4""), 127.7 (d, C2", 6"), 125.5 (d, $J_{C-F} = 3.7$ Hz, C3", 5"), 124.6 (d, C2", 6"), 87.8 (s, C4), 51.9 (q, COOMe), 34.8 (t, C1'), 28.4 (t, C2'). MS (m/e): 390 (M⁺, 11), 358 (M⁺-MeOH, 22), 331 (M⁺-COOMe, 34), 303 (M^+ -CH₂CH₂COOMe, 75), 105 (PhCO⁺, 100).

Reaction of [4,5,6-trimethoxy-2-[3-(2-trifluoromethylphenyl)prop-2-en-1-on- κO -yl]phenyl- κC^{1}]tetracarbonylmanganese (41) with methyl acrylate in carbon tetrachloride. Similarly a solution of **41** (0.13 g, 0.24 mmol) and methyl acrylate (0.15 ml, 1.67 mmol) in carbon tetrachloride (20 ml) was heated under reflux for 3 h. PLC (with diethyl ether / petroleum spirit 1:1) gave one major band at R_f 0.4, which was 2-methoxycarbonyl-1-(2-(2-trifluoromethylphenyl)ethenyl)-4,5,6-trimethoxyindan-1-ol 11 (0.075 g, 68%). It crystallized as small white fibrous crystals, m.p. 112°C. The stereochemistry at C1 and C2 was undetermined. IR: 1737 cm^{-1} (s, COOMe). ¹H NMR: δ 7.58 (d, 1H, J = 7.7 Hz, H3"), 7.43 (m, 2H, H5", H6"), 7.30 (m, 1H, H4"), 7.00 (dq, 1H, J = 15.6/2.4 Hz, H2'), 6.61 (s, 1H, H7), 6.15 (d, 1H, J = 15.6 Hz, H1'), 3.91 (s, 3H, 4-OMe), 3.82 (s, 3H, 6-OMe), 3.81 (s, 3H, 5-OMe), 3.72 (s, 3H, COOMe), 3.48 (t, 1H, J = 9.0 Hz, H2), 3.20 (m, 2H, CH_{2}), 3.08 (s, 1H, OH). ¹³C NMR: δ 172.2 (s, C=O), 154.2 (s, C4), 149.6 (s, C6), 142.0 (s, C5), 139.7 (s, C7a), 136.0 (s, C1"), 134.6 (d, C2'), 131.9 (d, C5"), 127.9 (d, C6"), 127.4 (d, C4"), 125.7 (d, $J_{C-F} = 5.4$ Hz, C3"), 124.8 (d, C1'), 123.8 (s, C3a), 101.9 (d, C7), 85.3 (s, C1), 61.0 (q, 5-OMe), 60.6 (q, 4-OMe), 58.8 (d, C2), 56.1 (q, 6-OMe), 52.0 (q, COOMe), 28.4 (t, C3). MS (m/e): 434 (M⁺-OH, 100), 375 (M⁺-OH-COOMe, 16), 344 (40), 279 (52), 201 (8), 119 (32), 91 (48). Anal. Found: C, 61.20; H, 5.20. C₂₃H₂₃F₃O₆. Calc.: C, 61.20; H, 4.91.

Reaction of [[1-(4-methoxyphenyl)-2-(3,4,5-trimeth $oxyphenylcarbonyl-<math>\kappa O$]ethenyl- κC^1]tetracarbonylmanganese (3e) with methyl vinyl ketone in acetonitrile. [[1-(4-Methoxyphenyl)-2-(3,4,5-trimethoxyphenylcarbonyl- κO]ethenyl- κC^1]tetracarbonylmanganese 3e (0.13 g, 0.26 mmol) and methyl vinyl ketone (0.15 ml, 1.80 mmol) were dissolved in nitrogen-saturated acetonitrile (20 ml) and the solution was refluxed for 1.5 h. PLC (with ethyl acetate/petroleum spirit 1:2) gave two bands at R_f 0.4 and R_f 0.2. The band at R_f 0.2 gave 3-(4-methoxyphenyl)-5-(3-oxobutyl)-5-(3,4,5trimethoxyphenyl)furan-2(5H)-one (10e) as a yellow oil (0.028 g, 24%) which did not crystallize. IR: 1757 (vs, CO), 1715 (s, COMe) cm⁻¹. ¹H NMR: δ 7.78 (d, 2H, J = 8.8 Hz, H2", 6"), 7.53 (s, 1H, H4), 6.91 (d, 2H, J = 8.8 Hz, H3", 5"), 6.61 (s, 2H, H2", 6"), 3.87 (s, 6H, 3^m, 5^m-(OMe)₂), 3.82 (s, 6H, 4^m, 4^m-(OMe)₂), 2.44 (m, 4H, CH₂-2, 3), 2.06 (s, 3H, Me). ¹³C \overline{NMR} : δ 207.4 (s, C3'), 171.7 (s, C2), 160.6 (s, C4"), 153.6 (s, C3^{""}, 5^{""}), 148.7 (d, C4), 137.9 (s, C4^{""}), 134.7 (s, C1["]), 128.9 (s, C1""), 128.6 (d, C2", 6"), 121.6 (s, C3), 114.1 (d, C3", 5"), 102.1 (d, C2", 6"), 87.5 (s, C5), 60.9 (q, 4"'-OMe), 56.4 (q, 3"', 5"'-(OMe)₂), 55.7 (q, 4"-OMe), 37.6 (t, C1'), 33.6 (t, C2'), 30.2 (q, Me). MS (m/e): 426 (M⁺, 33), 355 (M⁺-CH₂CH₂COMe, 45), 327 (M⁺-CH₂CH₂COMe-CO, 55), 299 (M⁺-CH₂CH₂COMe-2CO, 80), 195 ((MeO)₃C₆H₂CO⁺, 100).

The band at R_f 0.4 yielded an unidentified yellow oil (0.03 g) which did not crystallize. IR: 1734 cm⁻¹. ¹H NMR: δ 7.74 (d, 1H, J = 15.2 Hz), 7.54 (d, 2H, J = 7.5 Hz), 7.20 (d, 1H, J = 15.2 Hz), 7.14 (s, 1H), 6.94 (d, 2H, J = 7.5 Hz), 4.03 (s, 3H), 3.93 (s, 3H), 3.91 (s, 3H), 3.85 (s, 3H), 3.77 (s, 2H), 2.47 (s, 3H). ¹³C NMR: δ 210.3 (s), 196.2 (s), 160.2 (s), 153.8 (s), 148.8 (s), 138.9 (s), 137.6 (s), 135.9 (s), 129.7 (s), 128.4 (d), 120.9 (d), 114.3 (d), 102.8 (d), 61.2 (q), 60.5 (q), 56.5 (q), 55.4 (q), 36.9 (t), 30.2 (q).

Reaction of [[1-(3,4,5-trimethoxyphenyl)-2-(4-chlorophenylcarbonyl- κO]ethenyl- κC^{1}]tetracarbonylmanganese (3i) with methyl vinyl ketone in acetonitrile. Similarly **3i** (0.2 g, 0.40 mmol) and methyl vinyl ketone (0.2 ml, 2.40 mmol) in refluxing acetonitrile (20 ml) for 2 h. PLC (with ethyl acetate/petroleum spirit 1.5:1) gave two bands at R_f 0.4 and R_f 0.3. The band at R_f 0.3 gave 5-(4-chlorophenyl)-5-(3-oxobutyl)-3-(3,4,5-trimethoxyphenyl)furan-2(5H)-one (10f) as a reddish oil (0.122 g, 71%) which did not crystallize. IR: 1762 (s, CO), 1716 (s, COMe) cm⁻¹. ¹H NMR: δ 7.56 (s, 1H, H4), 7.36 (s, 4H, H2", 6", H3", 5"), 7.07 (s, 2H, H2", 6"), 3.87 (s, 6H, 3", 5"-(OMe)₂), 3.84 (s, 3H, 4"-OMe), 2.40 (m, 4H, CH₂-2, 3), 2.05 (s, 3H, Me). ¹³C NMR: δ 207.1 (s, C3'), 171.2 (s, C2), 153.4 (s, C3", 5"), 149.9 (d, C4), 139.5 (s, C4"'), 137.4 (s, C4"), 134.4 (s, C1"), 129.4 (s, C1""), 129.2 (d, C2"", 6""), 126.4 (d, C3"", 5""), 124.4 (s, C3), 104.5 (d, C2", 6"), 87.0 (s, C5), 60.9 (q, 4"-OMe), 56.3 (q, 3", 5"-(OMe)₂), 38.0 (t, C1'), 33.1 (t, C2'), 30.2 (q, Me). MS (m/e): 430 (M⁺, 87), 372 (M⁺-MeCOMe, 100), 359 (M⁺-CH₂CH₂COMe, 61), 139 (ClC₆H₄CO⁺, 83).

The band at R_f 0.4 gave 5-acetyl-1-(4-chlorophenyl)-3-(3,4,5-trimethoxyphenyl)cyclopent-2-en-1ol (12) as a colorless oil (0.017 g, 11%) which crystallized as white fibrous crystals, m.p. 155°C. The stereochemistry at C1 and C5 was not established. ¹H NMR: δ 7.50 (d, 2H, J = 8.6 Hz, H3', 5'), 7.36 (d, 2H, J = 8.6 Hz, H2', 6'), 6.71 (s, 2H, H2", 6"), 5.92 (dd, 1H, J = 2.0/1.0 Hz, H2), 3.86 (s, 6H, 3", 5"-(OMe)₂),

Table 2 Final positional parameters for the cyclomanganated indanyl phenyl ketone **7a**

Atom	x	у	Z
Mn(1)	0.8187(1)	0.1889(1)	0.1110(1)
C(1)	0.8203(6)	0.3246(5)	0.2616(5)
C(2)	0.8125(6)	0.3526(6)	0.3611(4)
C(3)	0.6813(6)	0.3582(5)	0.4367(5)
C(4)	0.8934(6)	0.2648(6)	0.4039(4)
C(5)	0.6153(7)	0.2617(6)	0.4304(5)
C(6)	0.5002(7)	0.2704(6)	0.4422(5)
C(7)	0.8273(9)	0.1645(6)	-0.0090(6)
C(8)	0.6566(7)	0.2428(7)	0.1418(6)
C(9)	0.8036(8)	0.0339(7)	0.1484(5)
C(10)	0.9884(8)	0.1633(6)	0.0658(5)
C(11)	0.8305(6)	0.3644(6)	0.0987(5)
C(12)	0.8321(6)	0.4110(6)	0.1828(5)
C(12)	0.8390(7)	0.5305(6)	0.1917(5)
C(13) C(14)	0.8464(7)	0.6059(6)	0.1130(5)
C(14) C(15)	0.8404(7)	0.5636(6)	0.0287(5)
C(15) C(16)	0.8429(7)	0.3030(0)	0.0223(5)
		0.4450(0)	-0.1356(6)
C(17)	0.821(1) 1.0256(6)		
C(21)		0.2885(5)	0.3695(4)
C(22)	1.0478(7)	0.3978(6)	0.3901(5)
C(23)	1.1646(7)	0.4253(6)	0.3615(5)
C(24)	1.2624(7)	0.3474(6)	0.3108(5)
C(25)	1.2438(7)	0.2387(6)	0.2890(5)
C(26)	1.1270(7)	0.2085(6)	0.3180(5)
C(27)	1.1124(7)	0.0881(6)	0.2979(5)
C(31)	0.8273(6)	0.2823(5)	0.5110(4)
C(32)	0.7084(6)	0.3373(5)	0.5301(5)
C(33)	0.6271(7)	0.3572(6)	0.6241(5)
C(34)	0.6683(7)	0.3218(6)	0.6987(5)
C(35)	0.7865(7)	0.2656(6)	0.6819(5)
C(36)	0.8684(7)	0.2464(5)	0.5872(5)
C(37)	0.4726(9)	0.390(1)	0.8166(6)
C(41)	0.4396(7)	0.1684(6)	0.4388(5)
C(42)	0.5012(7)	0.0819(6)	0.3707(5)
C(43)	0.4461(8)	-0.0127(6)	0.3629(6)
C(44)	0.3291(8)	-0.0236(6)	0.4237(6)
C(45)	0.2674(8)	0.0580(6)	0.4938(6)
C(46)	0.3203(7)	0.1534(6)	0.5026(5)
C(47)	0.2533(7)	0.2381(7)	0.5822(5)
F(1)	1.2172(4)	0.0223(4)	0.2514(3)
F(2)	1.0421(4)	0.0898(4)	0.2449(3)
F(3)	1.0589(4)	0.0280(3)	0.3802(3)
F(4)	0.3161(4)	0.2494(4)	0.6391(3)
F(5)	0.2248(4)	0.3479(4)	0.5509(3)
F(6)	0.1475(4)	0.2067(5)	0.6415(4)
O(1)	0.8136(4)	0.2215(4)	0.2460(3)
O(3)	0.6151(4)	0.4711(4)	0.4281(3)
0(7)	0.8326(7)	0.1429(5)	-0.0857(4)
O(8)	0.5577(7)	0.2818(6)	0.1564(5)
O(9)	0.7906(7)	-0.0608(5)	0.1733(4)
O(10)	1.0911(6)	0.1513(5)	0.0343(4)
O(10) O(17)	0.8298(6)	0.3997(4)	-0.0581(4)
O(37)	0.5996(5)	0.3375(5)	0.7945(3)
Cl(1)	0.4699(9)	0.003(1)	-0.0931(8)
Cl(2)	0.414(1)	0.171(1)	0.0292(8)
Cx(1)	0.453(5)	0.045(3)	-0.023(3)
	000(0)		

3.85 (s, 3H, 4"-OMe), 3.65 (t, 1H, J = 8.1/7.4 Hz, H5), 3.47 (ddd, 1H, J = 16.4/7.4/2.0 Hz, H4a), 2.90 (ddd, 1H, J = 16.4/8.1/1.0 Hz, H4b), 2.80 (s, 1H, OH), 2.04 (s, 3H, COMe). ¹³C NMR: δ 207.5 (s, CO), 153.3 (s, C3", 5"), 145.3 (s, C1"), 144.5 (s, C3), 138.9 (s, C4"), 133.2 (s, C4'), 130.3 (s, C1'), 128.8 (d, C2), 128.5 (d, C2', 6'), 126.9 (d, C3', 5'), 103.6 (d, C2", 6"), 86.4 (s, C1), 63.0 (d, C5), 61.0 (q, 4"-OMe), 56.2 (q, 3", 5"-(OMe)₂), 33.4 (t, C4), 31.2 (q, COCH₃). MS (*m/e*): 402 (M⁺, 67), 384 (M⁺-H₂O, 35), 34 (M⁺-H₂O-COMe, 100). Anal. Found: C, 65.00; H, 5.75. C₂₂H₂₃O₅Cl. Calc.: C, 65.59; H, 5.75.

2.4. X-Ray crystal structures

2.4.1. X-ray crystal structure of $[2-((1S^*, 2R^*, 3S^*))^{-1} + ydroxy^{-1}-((E)^{-2}-(2-trifluoromethylphenyl)-ethenyl)^{-3}-(2-trifluoromethylphenyl)^{-6}-methoxy^{-2}-indanylcarbonyl-<math>\kappa O$)-6-methoxyphenyl- κC^1]tetracarbonylmanganese (7a)

Yellow plate crystals were obtained by vapor diffusion of pentane into a saturated dichloromethane solution of **7a** at 4°C. Preliminary precession photography suggested a triclinic lattice. Intensity data were collected on a Nicolet R3 four-circle diffractometer at -110° C using monochromated Mo K α radiation ($\lambda =$ 0.7107 Å).

Crystal data: $C_{38}H_{25}F_6MnO_8.CH_2Cl_2$, M 863.48, triclinic, P1, a = 11.872(6), b = 11.549(7), c = 14.887(8)Å, $\alpha = 85.42(4)$, $\beta = 68.87(4)$, $\gamma = 80.65^{\circ}$, $U = 1878.08 Å^3$. $D_c \ 1.53 \ g \ cm^{-3}$ for Z = 2. F(000) 876, μ (Mo K α) 6.00 cm⁻¹.

A total of 4913 unique reflections in the range $2^{\circ} < 2\theta < 45^{\circ}$ were collected. These were corrected for Lorentz and polarization effects, and for linear absorption by a Ψ scan method. Of these, 3333 had $I \ge 2\sigma(I)$ and were used in all calculations. The coordinates of the manganese atom were found by analysis of the Patterson map using SHELXS-86 [11]. All other non-hydrogen atoms were revealed by a subsequent difference map phased on the manganese atom. In the final cycle of blocked full-matrix least-squares refinement, all non-hydrogen atoms were assigned anisotropic temperature factors, while hydrogen atoms were included in calculated positions with tied temperature factors, except for the hydroxy H(3), which was located and refined. A penultimate difference map showed residual electron density which could be assigned to a disordered molecule of dichloromethane, so this was included in the refinement, which converged at R = 0.0637, $R_{w} =$ 0.0632, where $w = [\sigma(F^2) + 0.000993F^2]^{-1}$. In the last cycle of refinement, the largest parameter shift (Δ/σ) was 0.25, and a final difference map showed no feature greater than $|0.61| e \text{ Å}^{-3}$. Refined coordinates are listed in Table 2.

2.4.2. X-Ray crystal structure of $(1S^*, 4S^*, 5R^*)$ -5-(4bromobenzoyl)-1-(4-bromophenyl)-3,4-di-(4-trifluoromethylphenyl)cyclopent-2-en-1-ol (8)

Translucent rectangular crystals were obtained by vapor diffusion of pentane into a saturated chloroform solution of 8 at 4°C. Preliminary precession photography indicated a triclinic lattice. Intensity data were collected on a Nicolet R3 four-circle diffractometer at -110° C, using monochromated Mo K α radiation ($\lambda =$ 0.7107Å).

Crystal data: $C_{32}H_{20}Br_2F_6O_2$.CHCl₃, M = 829.69, triclinic, PT, a = 10.666(8), b = 12.485(9), c = 12.828(10) Å, $\alpha = 103.58(6)$, $\beta = 90.44(6)$, $\gamma = 101.32(6)^\circ$, U = 1625.6 2 Å³, $D_c = 1.69$ g cm⁻³ for Z = 2, F(000) 820, μ (Mo K α) = 29.6 cm⁻¹.

A total of 4245 unique reflections in the range $4^{\circ} < 2\theta < 45^{\circ}$ were collected on a crystal of dimensions $0.80 \text{ mm} \times 0.40 \text{mm} \times 0.22 \text{ mm}$. These were corrected for Lorentz and polarization effects, and for linear absorption by a Ψ scan method. Of these, 2195 had $I \ge 3\sigma(I)$ and were used in all calculations. The structure was solved by Patterson methods and routinely developed. A penultimate difference map revealed a molecule of CHCl₃ in the lattice, so this was included in the refinement. In the final cycle of full-matrix least-squares refinement, chlorine and bromine atoms were assigned anisotropic temperature factors, while all other non-hydrogen atoms were treated isotropically. The CF₃ group with F(1)-F(3) was disordered over two orientations, so was modeled by six half-F atoms with a common isotropic temperature factor. Hydrogen atoms were included in calculated positions with tied temperature factors, except for the hydroxy H(1), which was located in a penultimate difference map and was included but not refined. Refinement converged at R =0.0705, $R_w = 0.0686$, where $w = [\sigma(F^2) +$ $(0.000993F^2]^{-1}$. In the last cycle of refinement, no parameter shifted by more than a Δ/σ of 0.02, and the largest feature in a final difference map of 1.3 $e \text{ Å}^{-3}$ was associated with the CF₃ group. Refined coordinates are given in Table 3.

3. Results and discussion

3.1. Cyclomanganation reactions

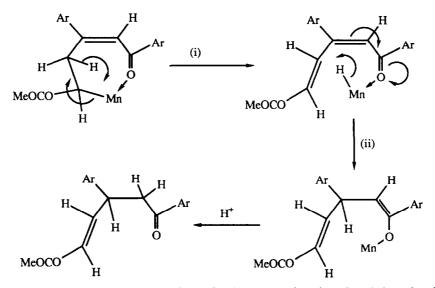
The reaction of PhCH₂ Mn(CO)₅ with chalcones proceeded smoothly in refluxing petroleum spirit (b.p. 60– 80°C) to give either the alkene-manganated (3) or the ring-manganated (4) isomers or both. The reaction conditions are a little milder than those used for aryl ketones (refluxing heptane: b.p. 98°C), and were the best compromise for cleanest reaction within a reasonable time. Reactions were generally complete after 5 h, and the products were readily purified by chromatography. Results are summarized in Table 1. Prepared simi-

 Table 3

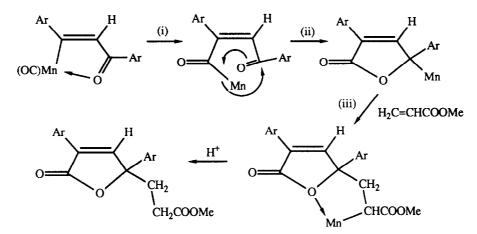
 Final positional parameters for the cyclopentenol 8

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Final positional parameters for the cyclopentenol 8							
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Atom	x	у	z				
$\begin{array}{cccccc} F(1) & 0.779(2) & 1.003(2) & 0.440(2) \\ F(1a) & 0.613(2) & 0.875(2) & 0.535(2) \\ F(2) & 0.582(2) & 0.932(2) & 0.444(2) \\ F(2a) & 0.799(2) & 0.961(2) & 0.531(2) \\ F(3a) & 0.642(2) & 0.975(2) & 0.428(2) \\ F(4) & 0.8426(9) & 0.2120(7) & 0.5878(7) \\ F(5) & 0.653(1) & 0.2419(9) & 0.5876(8) \\ F(6) & 0.8108(9) & 0.3719(7) & 0.6655(7) \\ O(1) & 1.0862(9) & 0.3731(8) & 0.0900(7) \\ O(3) & 0.8728(8) & 0.3965(7) & -0.0801(6) \\ C(1) & 0.984(1) & 0.309(1) & 0.054(1) \\ C(2) & 0.856(1) & 0.338(1) & 0.0901(9) \\ C(3) & 0.780(1) & 0.365(1) & -0.004(1) \\ C(4) & 0.734(1) & 0.469(1) & 0.055(1) \\ C(5) & 0.779(1) & 0.5111(1) & 0.156(1) \\ C(6) & 0.870(1) & 0.444(1) & 0.1866(9) \\ C(11) & 0.985(1) & 0.198(1) & -0.019(1) \\ C(12) & 1.092(1) & 0.190(1) & -0.081(1) \\ C(13) & 1.097(1) & 0.090(1) & -0.154(1) \\ C(14) & 0.996(1) & 0.005(1) & -0.164(1) \\ C(15) & 0.893(1) & 0.005(1) & -0.103(1) \\ C(22) & 0.695(1) & 0.208(1) & -0.060(1) \\ C(23) & 0.608(1) & 0.102(1) & -0.050(1) \\ C(24) & 0.503(1) & 0.070(1) & -0.149(1) \\ C(25) & 0.481(1) & 0.135(1) & -0.050(1) \\ C(24) & 0.503(1) & 0.070(1) & -0.149(1) \\ C(25) & 0.481(1) & 0.135(1) & -0.050(1) \\ C(24) & 0.503(1) & 0.070(1) & -0.149(1) \\ C(25) & 0.481(1) & 0.135(1) & -0.050(1) \\ C(24) & 0.503(1) & 0.070(1) & -0.149(1) \\ C(25) & 0.481(1) & 0.135(1) & -0.050(1) \\ C(24) & 0.503(1) & 0.070(1) & -0.149(1) \\ C(25) & 0.481(1) & 0.135(1) & -0.050(1) \\ C(24) & 0.503(1) & 0.753(1) & 0.229(1) \\ C(33) & 0.631(1) & 0.753(1) & 0.233(1) \\ C(34) & 0.719(1) & 0.805(1) & 0.377(1) \\ C(35) & 0.833(2) & 0.768(1) & 0.388(1) \\ C(36) & 0.848(1) & 0.671(1) & 0.314(1) \\ C(37) & 0.754(4) & 0.429(2) & 0.464(2) \\ C(41) & 0.843(1) & 0.407(1) & 0.2915(9) \\ C(42) & 0.719(1) & 0.352(1) & 0.477(1) \\ C(44) & 0.796(1) & 0.328(1) & 0.577(1) \\ C(45) & 0.920(1) & 0.362(1) & 0.477(1) \\ C(46) & 0.942(1) & 0.402(1) & 0.358(1) \\ C(47) & 0.774(2) & 0.288(1) & 0.577(1) \\ C(14) & 0.3754(4) & 0.229(23) & 0.2422(3) \\ C(12) & 0.2870(5) & 0.387(4) & 0.4114(3) \\ C(13) & 0.395(5) & 0.4580(4) & 0.2270(5) \\ \end{array}$	Br(1)	1.0074(2)	-0.1384(1)	-0.2634(1)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Br(2)	0.3813(2)	-0.0640(1)	-0.2082(1)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(1)	0.779(2)	1.003(2)	0.440(2)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{ccccc} F(2a) & 0.799(2) & 0.961(2) & 0.531(2) \\ F(3) & 0.729(2) & 0.911(2) & 0.560(2) \\ F(3a) & 0.642(2) & 0.975(2) & 0.428(2) \\ F(4) & 0.8426(9) & 0.2120(7) & 0.5878(7) \\ F(5) & 0.653(1) & 0.2419(9) & 0.5876(8) \\ F(6) & 0.8108(9) & 0.3719(7) & 0.6655(7) \\ O(1) & 1.0862(9) & 0.3731(8) & 0.0900(7) \\ O(3) & 0.8728(8) & 0.3965(7) & -0.0801(6) \\ C(1) & 0.984(1) & 0.309(1) & 0.054(1) \\ C(2) & 0.856(1) & 0.338(1) & 0.0901(9) \\ C(3) & 0.780(1) & 0.365(1) & -0.004(1) \\ C(4) & 0.734(1) & 0.469(1) & 0.055(1) \\ C(5) & 0.779(1) & 0.511(1) & 0.156(1) \\ C(6) & 0.870(1) & 0.444(1) & 0.1866(9) \\ C(11) & 0.985(1) & 0.198(1) & -0.019(1) \\ C(12) & 1.092(1) & 0.190(1) & -0.081(1) \\ C(13) & 1.097(1) & 0.090(1) & -0.154(1) \\ C(14) & 0.996(1) & 0.000(1) & -0.154(1) \\ C(15) & 0.893(1) & 0.005(1) & -0.103(1) \\ C(22) & 0.695(1) & 0.200(1) & -0.161(1) \\ C(22) & 0.695(1) & 0.200(1) & -0.161(1) \\ C(23) & 0.608(1) & 0.122(1) & -0.205(1) \\ C(24) & 0.503(1) & 0.070(1) & -0.149(1) \\ C(25) & 0.481(1) & 0.135(1) & -0.050(1) \\ C(24) & 0.503(1) & 0.070(1) & -0.149(1) \\ C(25) & 0.481(1) & 0.135(1) & -0.050(1) \\ C(24) & 0.503(1) & 0.770(1) & -0.222(1) \\ C(33) & 0.631(1) & 0.753(1) & 0.229(1) \\ C(34) & 0.719(1) & 0.805(1) & 0.377(1) \\ C(35) & 0.833(2) & 0.768(1) & 0.338(1) \\ C(34) & 0.719(1) & 0.332(1) & 0.377(1) \\ C(35) & 0.833(2) & 0.768(1) & 0.338(1) \\ C(34) & 0.719(1) & 0.332(1) & 0.319(1) \\ C(35) & 0.833(2) & 0.768(1) & 0.338(1) \\ C(44) & 0.796(1) & 0.326(1) & 0.477(1) \\ C(45) & 0.920(1) & 0.326(1) & 0.477(1) \\ C(44) & 0.796(1) & 0.326(1) & 0.477(1) \\ C(45) & 0.920(1) & 0.326(1) & 0.449(1) \\ C(44) & 0.796(1) & 0.326(1) & 0.477(1) \\ C(45) & 0.920(1) & 0.326(1) & 0.449(1) \\ C(46) & 0.942(1) & 0.402(1) & 0.358(1) \\ C(47) & 0.774(2) & 0.288(1) & 0.577(1) \\ C(11) & 0.375(4) & 0.2292(3) & 0.2422(3) \\ C(12) & 0.287(05) & 0.3874(4) & 0.4114(3) \\ C(13) & 0.3958(5) & 0.4580(4) & 0.2270(5) \\ \end{array} \right)$								
$\begin{array}{ccccccc} F(3) & 0.729(2) & 0.911(2) & 0.560(2) \\ F(3a) & 0.642(2) & 0.975(2) & 0.428(2) \\ F(4) & 0.8426(9) & 0.2120(7) & 0.5876(8) \\ F(5) & 0.653(1) & 0.2419(9) & 0.5876(8) \\ F(6) & 0.8108(9) & 0.3719(7) & 0.6655(7) \\ O(1) & 1.0862(9) & 0.3731(8) & 0.0900(7) \\ O(3) & 0.8728(8) & 0.3965(7) & - 0.0801(6) \\ C(1) & 0.984(1) & 0.309(1) & 0.054(1) \\ C(2) & 0.856(1) & 0.338(1) & 0.0901(9) \\ C(3) & 0.780(1) & 0.365(1) & - 0.004(1) \\ C(4) & 0.734(1) & 0.469(1) & 0.055(1) \\ C(5) & 0.779(1) & 0.511(1) & 0.156(1) \\ C(6) & 0.870(1) & 0.444(1) & 0.1866(9) \\ C(11) & 0.985(1) & 0.198(1) & - 0.019(1) \\ C(12) & 1.092(1) & 0.190(1) & - 0.081(1) \\ C(13) & 1.097(1) & 0.090(1) & - 0.154(1) \\ C(14) & 0.996(1) & 0.000(1) & - 0.164(1) \\ C(15) & 0.893(1) & 0.005(1) & - 0.103(1) \\ C(21) & 0.680(1) & 0.268(1) & - 0.060(1) \\ C(22) & 0.695(1) & 0.200(1) & - 0.161(1) \\ C(23) & 0.608(1) & 0.102(1) & - 0.205(1) \\ C(24) & 0.503(1) & 0.707(1) & - 0.149(1) \\ C(25) & 0.481(1) & 0.135(1) & - 0.050(1) \\ C(26) & 0.571(1) & 0.235(1) & - 0.006(1) \\ C(23) & 0.631(1) & 0.753(1) & 0.296(1) \\ C(33) & 0.631(1) & 0.753(1) & 0.296(1) \\ C(34) & 0.719(1) & 0.805(1) & 0.377(1) \\ C(35) & 0.833(2) & 0.768(1) & 0.338(1) \\ C(36) & 0.834(2) & 0.458(1) & 0.338(1) \\ C(36) & 0.834(2) & 0.723(1) & 0.296(1) \\ C(31) & 0.760(1) & 0.613(1) & 0.223(1) \\ C(44) & 0.796(1) & 0.333(1) & 0.412(1) \\ C(45) & 0.920(1) & 0.362(1) & 0.477(1) \\ C(44) & 0.796(1) & 0.325(1) & 0.477(1) \\ C(45) & 0.920(1) & 0.362(1) & 0.477(1) \\ C(44) & 0.796(1) & 0.326(1) & 0.477(1) \\ C(45) & 0.920(1) & 0.362(1) & 0.477(1) \\ C(44) & 0.796(1) & 0.326(1) & 0.477(1) \\ C(45) & 0.920(1) & 0.362(1) & 0.477(1) \\ C(44) & 0.796(1) & 0.328(1) & 0.577(1) \\ C(45) & 0.920(1) & 0.362(1) & 0.449(1) \\ C(46) & 0.942(1) & 0.328(1) & 0.577(1) \\ C(47) & 0.774(2) & 0.288(1) & 0.577(1) \\ C(41) & 0.3754(4) & 0.2292(3) & 0.2422(3) \\ C(12) & 0.3958(5) & 0.4580(4) & 0.2270(5) \\ \end{array} \right)$			0.961(2)					
$\begin{array}{cccccc} F(3a) & 0.642(2) & 0.975(2) & 0.428(2) \\ F(4) & 0.8426(9) & 0.2120(7) & 0.5878(7) \\ F(5) & 0.653(1) & 0.2419(9) & 0.5876(8) \\ F(6) & 0.8108(9) & 0.3719(7) & 0.6655(7) \\ O(1) & 1.0862(9) & 0.3731(8) & 0.0900(7) \\ O(3) & 0.8728(8) & 0.3965(7) & -0.0801(6) \\ C(1) & 0.984(1) & 0.309(1) & 0.054(1) \\ C(2) & 0.856(1) & 0.338(1) & 0.0901(9) \\ C(3) & 0.780(1) & 0.365(1) & - 0.004(1) \\ C(4) & 0.734(1) & 0.469(1) & 0.055(1) \\ C(5) & 0.779(1) & 0.511(1) & 0.156(1) \\ C(6) & 0.870(1) & 0.444(1) & 0.1866(9) \\ C(11) & 0.985(1) & 0.198(1) & -0.019(1) \\ C(12) & 1.092(1) & 0.190(1) & -0.081(1) \\ C(13) & 1.097(1) & 0.090(1) & -0.154(1) \\ C(14) & 0.996(1) & 0.000(1) & -0.164(1) \\ C(15) & 0.893(1) & 0.005(1) & -0.103(1) \\ C(22) & 0.698(1) & 0.104(1) & -0.030(1) \\ C(21) & 0.680(1) & 0.268(1) & -0.060(1) \\ C(22) & 0.695(1) & 0.200(1) & -0.164(1) \\ C(23) & 0.608(1) & 0.102(1) & -0.205(1) \\ C(24) & 0.503(1) & 0.070(1) & -0.149(1) \\ C(25) & 0.481(1) & 0.135(1) & -0.050(1) \\ C(26) & 0.571(1) & 0.235(1) & -0.006(1) \\ C(31) & 0.760(1) & 0.613(1) & 0.223(1) \\ C(33) & 0.631(1) & 0.753(1) & 0.296(1) \\ C(34) & 0.719(1) & 0.805(1) & 0.377(1) \\ C(35) & 0.833(2) & 0.768(1) & 0.388(1) \\ C(36) & 0.848(1) & 0.671(1) & 0.314(1) \\ C(37) & 0.705(2) & 0.912(2) & 0.464(2) \\ C(41) & 0.843(1) & 0.477(1) & 0.319(1) \\ C(44) & 0.796(1) & 0.332(1) & 0.412(1) \\ C(44) & 0.796(1) & 0.326(1) & 0.477(1) \\ C(45) & 0.920(1) & 0.362(1) & 0.449(1) \\ C(46) & 0.942(1) & 0.402(1) & 0.358(1) \\ C(47) & 0.774(2) & 0.288(1) & 0.577(1) \\ C(44) & 0.796(1) & 0.326(1) & 0.449(1) \\ C(45) & 0.920(1) & 0.362(1) & 0.449(1) \\ C(46) & 0.942(1) & 0.402(1) & 0.358(1) \\ C(47) & 0.774(2) & 0.288(1) & 0.577(1) \\ C(11) & 0.3754(4) & 0.2292(3) & 0.2422(3) \\ C(12) & 0.2870(5) & 0.3874(4) & 0.4114(3) \\ C(3) & 0.3958(5) & 0.4580(4) & 0.2270(5) \\ \end{array} \right)$								
$\begin{array}{llllllllllllllllllllllllllllllllllll$								
$\begin{array}{ccccccc} F(5) & 0.653(1) & 0.2419(9) & 0.5876(8) \\ F(6) & 0.8108(9) & 0.3719(7) & 0.6655(7) \\ O(1) & 1.0862(9) & 0.3731(8) & 0.0900(7) \\ O(3) & 0.8728(8) & 0.3965(7) & -0.0801(6) \\ C(1) & 0.984(1) & 0.309(1) & 0.054(1) \\ C(2) & 0.856(1) & 0.338(1) & 0.0901(9) \\ C(3) & 0.780(1) & 0.365(1) & -0.004(1) \\ C(4) & 0.734(1) & 0.469(1) & 0.055(1) \\ C(5) & 0.779(1) & 0.511(1) & 0.156(1) \\ C(6) & 0.870(1) & 0.4444(1) & 0.1866(9) \\ C(11) & 0.985(1) & 0.198(1) & -0.019(1) \\ C(12) & 1.092(1) & 0.190(1) & -0.081(1) \\ C(13) & 1.097(1) & 0.090(1) & -0.154(1) \\ C(14) & 0.996(1) & 0.000(1) & -0.164(1) \\ C(15) & 0.893(1) & 0.005(1) & -0.103(1) \\ C(29) & 0.304(2) & 0.349(1) & 0.273(1) \\ C(21) & 0.680(1) & 0.268(1) & -0.060(1) \\ C(22) & 0.695(1) & 0.200(1) & -0.161(1) \\ C(23) & 0.608(1) & 0.102(1) & -0.205(1) \\ C(24) & 0.503(1) & 0.070(1) & -0.149(1) \\ C(25) & 0.481(1) & 0.135(1) & -0.050(1) \\ C(26) & 0.571(1) & 0.235(1) & -0.006(1) \\ C(31) & 0.760(1) & 0.613(1) & 0.233(1) \\ C(33) & 0.631(1) & 0.753(1) & 0.296(1) \\ C(34) & 0.719(1) & 0.805(1) & 0.377(1) \\ C(35) & 0.833(2) & 0.768(1) & 0.388(1) \\ C(36) & 0.848(1) & 0.671(1) & 0.314(1) \\ C(37) & 0.705(2) & 0.912(2) & 0.464(2) \\ C(41) & 0.843(1) & 0.407(1) & 0.2915(9) \\ C(42) & 0.719(1) & 0.332(1) & 0.412(1) \\ C(43) & 0.697(1) & 0.332(1) & 0.412(1) \\ C(44) & 0.796(1) & 0.332(1) & 0.477(1) \\ C(45) & 0.920(1) & 0.362(1) & 0.477(1) \\ C(44) & 0.796(1) & 0.328(1) & 0.577(1) \\ C(45) & 0.920(1) & 0.362(1) & 0.477(1) \\ C(44) & 0.796(1) & 0.328(1) & 0.577(1) \\ C(45) & 0.920(1) & 0.362(1) & 0.449(1) \\ C(46) & 0.942(1) & 0.402(1) & 0.358(1) \\ C(47) & 0.774(2) & 0.288(1) & 0.577(1) \\ C(11) & 0.3754(4) & 0.2292(3) & 0.2422(3) \\ C(12) & 0.2870(5) & 0.3874(4) & 0.4114(3) \\ C(3) & 0.3958(5) & 0.4580(4) & 0.2270(5) \\ \end{array} \right)$								
$\begin{array}{ccccccc} F(6) & 0.8108(9) & 0.3719(7) & 0.6655(7) \\ O(1) & 1.0862(9) & 0.3731(8) & 0.0900(7) \\ O(3) & 0.8728(8) & 0.3965(7) & -0.0801(6) \\ C(1) & 0.984(1) & 0.309(1) & 0.054(1) \\ C(2) & 0.856(1) & 0.338(1) & 0.0901(9) \\ C(3) & 0.780(1) & 0.365(1) & -0.004(1) \\ C(4) & 0.734(1) & 0.469(1) & 0.055(1) \\ C(5) & 0.779(1) & 0.511(1) & 0.156(1) \\ C(6) & 0.870(1) & 0.444(1) & 0.1866(9) \\ C(11) & 0.985(1) & 0.198(1) & -0.019(1) \\ C(12) & 1.092(1) & 0.190(1) & -0.081(1) \\ C(13) & 1.097(1) & 0.090(1) & -0.154(1) \\ C(14) & 0.996(1) & 0.000(1) & -0.154(1) \\ C(15) & 0.893(1) & 0.005(1) & -0.103(1) \\ C(29) & 0.304(2) & 0.349(1) & 0.273(1) \\ C(21) & 0.680(1) & 0.268(1) & -0.060(1) \\ C(22) & 0.695(1) & 0.200(1) & -0.161(1) \\ C(23) & 0.608(1) & 0.102(1) & -0.205(1) \\ C(24) & 0.503(1) & 0.070(1) & -0.149(1) \\ C(25) & 0.481(1) & 0.135(1) & -0.050(1) \\ C(26) & 0.571(1) & 0.235(1) & -0.006(1) \\ C(31) & 0.760(1) & 0.613(1) & 0.233(1) \\ C(33) & 0.631(1) & 0.753(1) & 0.296(1) \\ C(34) & 0.719(1) & 0.805(1) & 0.377(1) \\ C(35) & 0.833(2) & 0.768(1) & 0.388(1) \\ C(36) & 0.848(1) & 0.671(1) & 0.314(1) \\ C(37) & 0.705(2) & 0.912(2) & 0.464(2) \\ C(41) & 0.843(1) & 0.407(1) & 0.2915(9) \\ C(42) & 0.719(1) & 0.332(1) & 0.412(1) \\ C(43) & 0.97(1) & 0.333(1) & 0.412(1) \\ C(44) & 0.796(1) & 0.333(1) & 0.412(1) \\ C(45) & 0.920(1) & 0.362(1) & 0.477(1) \\ C(44) & 0.796(1) & 0.328(1) & 0.577(1) \\ C(45) & 0.920(1) & 0.362(1) & 0.477(1) \\ C(44) & 0.796(1) & 0.328(1) & 0.577(1) \\ C(45) & 0.920(1) & 0.362(1) & 0.477(1) \\ C(44) & 0.796(1) & 0.328(1) & 0.577(1) \\ C(45) & 0.920(1) & 0.362(1) & 0.449(1) \\ C(46) & 0.942(1) & 0.402(1) & 0.358(1) \\ C(47) & 0.774(2) & 0.288(1) & 0.577(1) \\ C(11) & 0.3754(4) & 0.2292(3) & 0.2422(3) \\ C(12) & 0.2870(5) & 0.3874(4) & 0.4114(3) \\ C(3) & 0.3958(5) & 0.4580(4) & 0.2270(5) \\ \end{array}$								
$\begin{array}{llllllllllllllllllllllllllllllllllll$								
$\begin{array}{llllllllllllllllllllllllllllllllllll$		1.0862(9)						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				-0.154(1)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				-0.103(1)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.304(2)	0.349(1)	0.273(1)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccc} C(23) & 0.608(1) & 0.102(1) & -0.205(1) \\ C(24) & 0.503(1) & 0.070(1) & -0.149(1) \\ C(25) & 0.481(1) & 0.135(1) & -0.050(1) \\ C(26) & 0.571(1) & 0.235(1) & -0.006(1) \\ C(31) & 0.760(1) & 0.613(1) & 0.233(1) \\ C(32) & 0.647(1) & 0.657(1) & 0.222(1) \\ C(33) & 0.631(1) & 0.753(1) & 0.296(1) \\ C(34) & 0.719(1) & 0.805(1) & 0.377(1) \\ C(35) & 0.833(2) & 0.768(1) & 0.388(1) \\ C(36) & 0.848(1) & 0.671(1) & 0.314(1) \\ C(37) & 0.705(2) & 0.912(2) & 0.464(2) \\ C(41) & 0.843(1) & 0.407(1) & 0.2915(9) \\ C(42) & 0.719(1) & 0.372(1) & 0.319(1) \\ C(43) & 0.697(1) & 0.333(1) & 0.412(1) \\ C(44) & 0.796(1) & 0.326(1) & 0.477(1) \\ C(45) & 0.920(1) & 0.362(1) & 0.449(1) \\ C(46) & 0.942(1) & 0.402(1) & 0.358(1) \\ C(47) & 0.774(2) & 0.288(1) & 0.577(1) \\ Cl(1) & 0.3754(4) & 0.229(3) & 0.2422(3) \\ Cl(2) & 0.2870(5) & 0.3874(4) & 0.4114(3) \\ Cl(3) & 0.3958(5) & 0.4580(4) & 0.2270(5) \\ \end{array}$	C(21)	0.680(1)	0.268(1)	-0.060(1)				
$\begin{array}{ccccccc} C(24) & 0.503(1) & 0.070(1) & -0.149(1) \\ C(25) & 0.481(1) & 0.135(1) & -0.050(1) \\ C(26) & 0.571(1) & 0.235(1) & -0.006(1) \\ C(31) & 0.760(1) & 0.613(1) & 0.233(1) \\ C(32) & 0.647(1) & 0.657(1) & 0.222(1) \\ C(33) & 0.631(1) & 0.753(1) & 0.296(1) \\ C(34) & 0.719(1) & 0.805(1) & 0.377(1) \\ C(35) & 0.833(2) & 0.768(1) & 0.388(1) \\ C(36) & 0.848(1) & 0.671(1) & 0.314(1) \\ C(37) & 0.705(2) & 0.912(2) & 0.464(2) \\ C(41) & 0.843(1) & 0.407(1) & 0.2915(9) \\ C(42) & 0.719(1) & 0.372(1) & 0.319(1) \\ C(43) & 0.697(1) & 0.333(1) & 0.412(1) \\ C(44) & 0.796(1) & 0.326(1) & 0.477(1) \\ C(45) & 0.920(1) & 0.362(1) & 0.449(1) \\ C(46) & 0.942(1) & 0.402(1) & 0.358(1) \\ C(47) & 0.774(2) & 0.288(1) & 0.577(1) \\ Cl(1) & 0.3754(4) & 0.2292(3) & 0.2422(3) \\ Cl(2) & 0.2870(5) & 0.3874(4) & 0.4114(3) \\ Cl(3) & 0.3958(5) & 0.4580(4) & 0.2270(5) \\ \end{array}$	C(22)	0.695(1)	0.200(1)	-0.161(1)				
$\begin{array}{ccccccc} C(25) & 0.481(1) & 0.135(1) & -0.050(1) \\ C(26) & 0.571(1) & 0.235(1) & -0.006(1) \\ C(31) & 0.760(1) & 0.613(1) & 0.233(1) \\ C(32) & 0.647(1) & 0.657(1) & 0.222(1) \\ C(33) & 0.631(1) & 0.753(1) & 0.296(1) \\ C(34) & 0.719(1) & 0.805(1) & 0.377(1) \\ C(35) & 0.833(2) & 0.768(1) & 0.388(1) \\ C(36) & 0.848(1) & 0.671(1) & 0.314(1) \\ C(37) & 0.705(2) & 0.912(2) & 0.464(2) \\ C(41) & 0.843(1) & 0.407(1) & 0.2915(9) \\ C(42) & 0.719(1) & 0.372(1) & 0.319(1) \\ C(43) & 0.697(1) & 0.333(1) & 0.412(1) \\ C(44) & 0.796(1) & 0.326(1) & 0.477(1) \\ C(45) & 0.920(1) & 0.362(1) & 0.449(1) \\ C(46) & 0.942(1) & 0.402(1) & 0.358(1) \\ C(47) & 0.774(2) & 0.288(1) & 0.577(1) \\ Cl(1) & 0.3754(4) & 0.2292(3) & 0.2422(3) \\ Cl(2) & 0.2870(5) & 0.3874(4) & 0.4114(3) \\ Cl(3) & 0.3958(5) & 0.4580(4) & 0.2270(5) \\ \end{array}$	C(23)	0.608(1)	0.102(1)	-0.205(1)				
$\begin{array}{ccccccc} C(26) & 0.571(1) & 0.235(1) & -0.006(1) \\ C(31) & 0.760(1) & 0.613(1) & 0.233(1) \\ C(32) & 0.647(1) & 0.657(1) & 0.222(1) \\ C(33) & 0.631(1) & 0.753(1) & 0.296(1) \\ C(34) & 0.719(1) & 0.805(1) & 0.377(1) \\ C(35) & 0.833(2) & 0.768(1) & 0.388(1) \\ C(36) & 0.848(1) & 0.671(1) & 0.314(1) \\ C(37) & 0.705(2) & 0.912(2) & 0.464(2) \\ C(41) & 0.843(1) & 0.407(1) & 0.2915(9) \\ C(42) & 0.719(1) & 0.372(1) & 0.319(1) \\ C(43) & 0.697(1) & 0.333(1) & 0.412(1) \\ C(44) & 0.796(1) & 0.326(1) & 0.477(1) \\ C(45) & 0.920(1) & 0.362(1) & 0.449(1) \\ C(46) & 0.942(1) & 0.402(1) & 0.358(1) \\ C(47) & 0.774(2) & 0.288(1) & 0.577(1) \\ C(11) & 0.3754(4) & 0.2292(3) & 0.2422(3) \\ C(2) & 0.2870(5) & 0.3874(4) & 0.4114(3) \\ C(3) & 0.3958(5) & 0.4580(4) & 0.2270(5) \\ \end{array}$	C(24)	0.503(1)	0.070(1)	-0.149(1)				
$\begin{array}{cccccccc} C(31) & 0.760(1) & 0.613(1) & 0.233(1) \\ C(32) & 0.647(1) & 0.657(1) & 0.222(1) \\ C(33) & 0.631(1) & 0.753(1) & 0.296(1) \\ C(34) & 0.719(1) & 0.805(1) & 0.377(1) \\ C(35) & 0.833(2) & 0.768(1) & 0.388(1) \\ C(36) & 0.848(1) & 0.671(1) & 0.314(1) \\ C(37) & 0.705(2) & 0.912(2) & 0.464(2) \\ C(41) & 0.843(1) & 0.407(1) & 0.2915(9) \\ C(42) & 0.719(1) & 0.372(1) & 0.319(1) \\ C(43) & 0.697(1) & 0.333(1) & 0.412(1) \\ C(44) & 0.796(1) & 0.326(1) & 0.477(1) \\ C(45) & 0.920(1) & 0.362(1) & 0.449(1) \\ C(46) & 0.942(1) & 0.402(1) & 0.358(1) \\ C(47) & 0.774(2) & 0.288(1) & 0.577(1) \\ Cl(1) & 0.3754(4) & 0.2292(3) & 0.2422(3) \\ Cl(2) & 0.2870(5) & 0.3874(4) & 0.4114(3) \\ Cl(3) & 0.3958(5) & 0.4580(4) & 0.2270(5) \\ \end{array}$	C(25)	0.481(1)	0.135(1)	-0.050(1)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(26)	0.571(1)		-0.006(1)				
$\begin{array}{cccccccc} C(33) & 0.631(1) & 0.753(1) & 0.296(1) \\ C(34) & 0.719(1) & 0.805(1) & 0.377(1) \\ C(35) & 0.833(2) & 0.768(1) & 0.388(1) \\ C(36) & 0.848(1) & 0.671(1) & 0.314(1) \\ C(37) & 0.705(2) & 0.912(2) & 0.464(2) \\ C(41) & 0.843(1) & 0.407(1) & 0.2915(9) \\ C(42) & 0.719(1) & 0.372(1) & 0.319(1) \\ C(43) & 0.697(1) & 0.333(1) & 0.412(1) \\ C(44) & 0.796(1) & 0.326(1) & 0.477(1) \\ C(45) & 0.920(1) & 0.362(1) & 0.449(1) \\ C(46) & 0.942(1) & 0.402(1) & 0.358(1) \\ C(47) & 0.774(2) & 0.288(1) & 0.577(1) \\ Cl(1) & 0.3754(4) & 0.2292(3) & 0.2422(3) \\ Cl(2) & 0.2870(5) & 0.3874(4) & 0.4114(3) \\ Cl(3) & 0.3958(5) & 0.4580(4) & 0.2270(5) \\ \end{array}$	C(31)	0.760(1)	0.613(1)	0.233(1)				
$\begin{array}{ccccccc} C(34) & 0.719(1) & 0.805(1) & 0.377(1) \\ C(35) & 0.833(2) & 0.768(1) & 0.388(1) \\ C(36) & 0.848(1) & 0.671(1) & 0.314(1) \\ C(37) & 0.705(2) & 0.912(2) & 0.464(2) \\ C(41) & 0.843(1) & 0.407(1) & 0.2915(9) \\ C(42) & 0.719(1) & 0.372(1) & 0.319(1) \\ C(43) & 0.697(1) & 0.333(1) & 0.412(1) \\ C(44) & 0.796(1) & 0.326(1) & 0.477(1) \\ C(45) & 0.920(1) & 0.362(1) & 0.449(1) \\ C(46) & 0.942(1) & 0.402(1) & 0.358(1) \\ C(47) & 0.774(2) & 0.288(1) & 0.577(1) \\ Cl(1) & 0.3754(4) & 0.2292(3) & 0.2422(3) \\ Cl(2) & 0.2870(5) & 0.3874(4) & 0.4114(3) \\ Cl(3) & 0.3958(5) & 0.4580(4) & 0.2270(5) \\ \end{array}$	C(32)	0.647(1)	0.657(1)	0.222(1)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(33)	0.631(1)	0.753(1)	0.296(1)				
$\begin{array}{cccccccc} C(36) & 0.848(1) & 0.671(1) & 0.314(1) \\ C(37) & 0.705(2) & 0.912(2) & 0.464(2) \\ C(41) & 0.843(1) & 0.407(1) & 0.2915(9) \\ C(42) & 0.719(1) & 0.372(1) & 0.319(1) \\ C(43) & 0.697(1) & 0.333(1) & 0.412(1) \\ C(44) & 0.796(1) & 0.326(1) & 0.477(1) \\ C(45) & 0.920(1) & 0.362(1) & 0.449(1) \\ C(46) & 0.942(1) & 0.402(1) & 0.358(1) \\ C(47) & 0.774(2) & 0.288(1) & 0.577(1) \\ Cl(1) & 0.3754(4) & 0.2292(3) & 0.2422(3) \\ Cl(2) & 0.2870(5) & 0.3874(4) & 0.4114(3) \\ Cl(3) & 0.3958(5) & 0.4580(4) & 0.2270(5) \\ \end{array}$		0.719(1)		0.377(1)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(35)	0.833(2)	0.768(1)	0.388(1)				
$\begin{array}{cccccc} C(41) & 0.843(1) & 0.407(1) & 0.2915(9) \\ C(42) & 0.719(1) & 0.372(1) & 0.319(1) \\ C(43) & 0.697(1) & 0.333(1) & 0.412(1) \\ C(44) & 0.796(1) & 0.326(1) & 0.477(1) \\ C(45) & 0.920(1) & 0.362(1) & 0.449(1) \\ C(46) & 0.942(1) & 0.402(1) & 0.358(1) \\ C(47) & 0.774(2) & 0.288(1) & 0.577(1) \\ Cl(1) & 0.3754(4) & 0.2292(3) & 0.2422(3) \\ Cl(2) & 0.2870(5) & 0.3874(4) & 0.4114(3) \\ Cl(3) & 0.3958(5) & 0.4580(4) & 0.2270(5) \\ \end{array}$	C(36)		0.671(1)					
$\begin{array}{cccccccc} C(42) & 0.719(1) & 0.372(1) & 0.319(1) \\ C(43) & 0.697(1) & 0.333(1) & 0.412(1) \\ C(44) & 0.796(1) & 0.326(1) & 0.477(1) \\ C(45) & 0.920(1) & 0.362(1) & 0.449(1) \\ C(46) & 0.942(1) & 0.402(1) & 0.358(1) \\ C(47) & 0.774(2) & 0.288(1) & 0.577(1) \\ Cl(1) & 0.3754(4) & 0.2292(3) & 0.2422(3) \\ Cl(2) & 0.2870(5) & 0.3874(4) & 0.4114(3) \\ Cl(3) & 0.3958(5) & 0.4580(4) & 0.2270(5) \\ \end{array}$			0.912(2)	0.464(2)				
$\begin{array}{ccccc} C(43) & 0.697(1) & 0.333(1) & 0.412(1) \\ C(44) & 0.796(1) & 0.326(1) & 0.477(1) \\ C(45) & 0.920(1) & 0.362(1) & 0.449(1) \\ C(46) & 0.942(1) & 0.402(1) & 0.358(1) \\ C(47) & 0.774(2) & 0.288(1) & 0.577(1) \\ Cl(1) & 0.3754(4) & 0.2292(3) & 0.2422(3) \\ Cl(2) & 0.2870(5) & 0.3874(4) & 0.4114(3) \\ Cl(3) & 0.3958(5) & 0.4580(4) & 0.2270(5) \\ \end{array}$	C(41)	0.843(1)		0.2915(9)				
$\begin{array}{ccccc} C(44) & 0.796(1) & 0.326(1) & 0.477(1) \\ C(45) & 0.920(1) & 0.362(1) & 0.449(1) \\ C(46) & 0.942(1) & 0.402(1) & 0.358(1) \\ C(47) & 0.774(2) & 0.288(1) & 0.577(1) \\ Cl(1) & 0.3754(4) & 0.2292(3) & 0.2422(3) \\ Cl(2) & 0.2870(5) & 0.3874(4) & 0.4114(3) \\ Cl(3) & 0.3958(5) & 0.4580(4) & 0.2270(5) \end{array}$	C(42)			0.319(1)				
C(45)0.920(1)0.362(1)0.449(1)C(46)0.942(1)0.402(1)0.358(1)C(47)0.774(2)0.288(1)0.577(1)Cl(1)0.3754(4)0.2292(3)0.2422(3)Cl(2)0.2870(5)0.3874(4)0.4114(3)Cl(3)0.3958(5)0.4580(4)0.2270(5)	C(43)	0.697(1)	0.333(1)	0.412(1)				
C(46)0.942(1)0.402(1)0.358(1)C(47)0.774(2)0.288(1)0.577(1)Cl(1)0.3754(4)0.2292(3)0.2422(3)Cl(2)0.2870(5)0.3874(4)0.4114(3)Cl(3)0.3958(5)0.4580(4)0.2270(5)	C(44)	0.796(1)	0.326(1)	0.477(1)				
C(47)0.774(2)0.288(1)0.577(1)Cl(1)0.3754(4)0.2292(3)0.2422(3)Cl(2)0.2870(5)0.3874(4)0.4114(3)Cl(3)0.3958(5)0.4580(4)0.2270(5)	C(45)	0.920(1)	0.362(1)	0.449(1)				
Cl(1)0.3754(4)0.2292(3)0.2422(3)Cl(2)0.2870(5)0.3874(4)0.4114(3)Cl(3)0.3958(5)0.4580(4)0.2270(5)	C(46)	0.942(1)	0.402(1)					
Cl(2)0.2870(5)0.3874(4)0.4114(3)Cl(3)0.3958(5)0.4580(4)0.2270(5)				0.577(1)				
Cl(3) 0.3958(5) 0.4580(4) 0.2270(5)		0.3754(4)		0.2422(3)				
H(1) 0.878 0.480 0.904								
	H(1)	0.878	0.480	0.904				

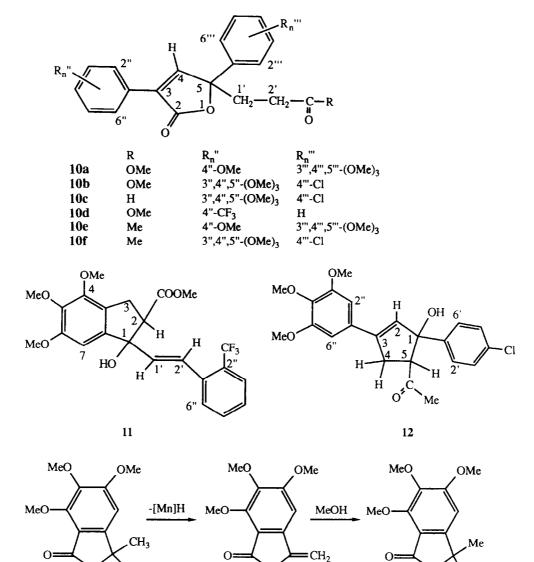
larly were 3a, 5 and 6 from the corresponding benzylidene-acetone, thienyl chalcone analog and coumaranone respectively. Overall yields were reasonable for most substrates, with lower yields in some cases attributable to subsequent reaction of the cyclometallated complex with another molecule of chalcone (see below).


The direct metallation complements the insertion methods used by Booth and Hargreaves [7] to produce compounds 3. Their methods are experimentally more complicated and require expensive alkynes, while the direct metallation starts from chalcones readily prepared from a variety of accessible acetophenones and benzaldehydes, thereby allowing more flexibility in substituent variation than the limited number of commercially available alkynes permits. On the other hand, the direct approach may give mixtures of alkene- and ringmetallated isomers, although this varies with substituents (see below). Where such isomers were formed, their complete separation was not always possible by chromatography, in which cases they were characterized by NMR spectroscopy of the mixtures. Separation could also sometimes be achieved by fractional crystallization using dichloromethane/petroleum spirit, when the ring-manganated product tended to crystallize first. The cyclomanganated products were yellow to red, with the ring-manganated species darker in color. All are readily handled in air without significant decomposition, can be chromatographed, and are soluble in common organic solvents.

In the solution infrared spectrum of a cis- $LL'Mn(CO)_4$ molecule, four absorption bands are expected in the $\nu(CO)$ region, but the cyclomanganated species prepared in this study generally showed only three, at about 2080, 1995 and 1940 cm^{-1} , with the middle of these containing two coincidental vibrations. There was no systematic difference between the infrared spectra of the alkene- and ring-manganated compounds, so this technique could not be used for distinguishing them. The similarity of the carbonyl stretching vibration patterns suggests that the five-membered ring in the metallated non-aromatic compounds (3) is similar electronically and geometrically to those formed in orthometallated aromatic substrates (e.g. 4, and orthometallated acetophenones generally). This is also the conclusion from comparison of the reported [8b,12] structure of **3a** with those of numerous aromatic examples of type 1, all of which have very similar Mn–C and Mn–O distances and O–Mn–C angles [1].

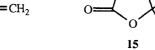

The alkene- and ring-manganated isomers can be readily distinguished by ¹H NMR, since alkene manganation eliminates the alkene H3 signal, and converts the H2 doublet to a singlet which moves dramatically down field. On the other hand, the ring-manganated compounds show predictable changes in the aromatic H pattern, and the alkene H signals (H2' and H3' in 4) remain as doublets moved only slightly downfield.

The range of chalcones with different substituents on the α -phenyl and benzoyl rings allowed study of electronic effects of substituents on the selectivity between the alternative metallation sites. Little is known about the mechanism of cyclomanganation reactions in general, but early work by Takahashi and Tsuji [13] and by Bennett et al. [14] suggested that cyclopalladiation of unsymmetrically substituted azobenzenes was electrophilic, while cyclomanganation of similar substrates was nucleophilic. The results of the present study, listed in Table 1, do not allow such a clear conclusion. Alkene manganation is favored by a CF₃ group in the para position of the β -phenyl ring bonded to the manganation site, though it is less favored by the same group in the ortho position, presumably for steric reasons. Methoxy substituents on the β -phenyl ring have a weaker directing influence.


By contrast, in the benzoyl ring a para-chloro or -trifluoromethyl group (meta to the potential site of ring manganation) directs manganation away preferentially to the alkene center. Overall there appears to be a general preference for alkene manganation, but ringmanganation is only marginally less favored. Interpretations of substituent effects in terms of electrophilic or nucleophilic mechanisms are not justified with the present lack of knowledge of mechanism. Nevertheless

Scheme 1. Possible mechanisms for formation of products of type 9 subsequent to insertion of methyl acrylate into the C-Mn bond of alkene-manganated chalcones. Metal carbonyl ligands are omitted for clarity.

Scheme 2. Possible mechanism of formation of butenolides (10) by coupling of alkene-manganated chalcones with methyl acrylate. Metal ligands are omitted for clarity.


С

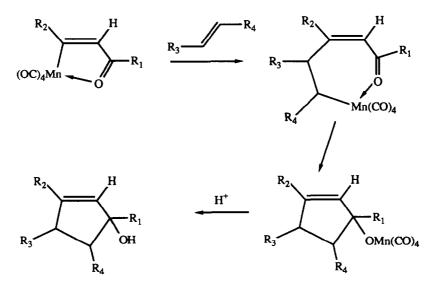
14

0

13

[Mn]

. OMe specificity, or at least high selectivity, for alkene manganation can be achieved if required (a) by having no aromatic ring on the carbonyl carbon, as in **3a**, (b) by blocking the ortho sites on the benzoyl ring, as in **3c**, or (c) by including a $-CF_3$ substituent in the para position on the β -phenyl ring (**3o-3r**).


For chalcones with a meta group in the benzoyl ring, two different manganation sites are available. This accounts for the formation of the isomeric pairs 4j-4j'and 4k-4k', in which Mn is bonded either ortho or para to the substituent (MeO and Cl, respectively). The ortho isomers (4j and 4k) were formed in greater than twofold excess in each case. Similar directive effects promoting orthomanganation in the sterically crowded position have been noted more generally with 3-substituted acetophenones [1,15].

3.2. Reactions of cyclomanganated chalcones with alkenes

Orthomanganated acetophenones and related species react with alkenes to give a variety of products, although promotion with Li₂PdCl₄ or Me₃NO has often been employed [1,16]. We have therefore investigated similar reactions with the cyclometallated chalcones made available by the reactions discussed above. Thus, cyclometallated chalcone 3e reacted with methyl acrylate in refluxing CCl₄, in the absence of any promoter, to give a high yield of the α , β -unsaturated ester 9a. Substrates **3i** and **3r** gave the corresponding compounds 9b and 9d similarly. In these products, conjugation across the chalcone system has been lost with saturation of the α,β double bond. Such saturation is unknown in analogous coupling reactions of orthomanganated acetophenones, the α, β double bond in those cases, however, being part of an aromatic ring.

Shown in Scheme 1 is one possible pathway to product subsequent to insertion of alkene into the C-Mn bond. It involves hydride migration via β -metal-hydride elimination (i), followed by δ -metal-hydride addition (ii), with the subsequent protonation possibly occurring on work-up. There are many possible variations on and alternatives to this tentative proposal.

The reactions are of synthetic interest in that they result in carbon-carbon bond formation between the electrophilic β -carbons of two α, β -unsaturated carbonyl (enone) systems. Transition-metal catalysis of analogous tail-to-tail dimerization of methyl acrylate to dimethyl hexanedioates is receiving considerable current attention as a potential industrial route to adipic acid for use in the Nylon-6,6 industry as an alternative to routes based on cyclohexane-based feedstocks [17]. The product shown in Scheme 1 is also formed in acetonitrile as solvent, but in lower yield and with substituted furan-2(5H)-ones (α,β -butenolides) formed as well, such as 10a from 3e. Butenolide formation is presumably initiated by carbonyl insertion induced by the donor MeCN molecule (step (i) of the postulated sequence of steps in Scheme 2). Step (ii) involves cyclization and concomitant Mn transfer to form an alkyl-Mn species, which then (step (iii)) reacts with alkene to form an insertion product. This, on protonation (step (iv)) — again possibly during work-up gives the butenolide. If the rearrangement (step (ii)) is too stereoelectronically restricted to occur, a concerted cyclization and insertion may somehow occur. There is only indirect support for the formation of such an alkyl-Mn species: in the unsuccessful attempted coupling of orthomanganated 2',3',4'-trimethoxyacetophenone with methyl acrylate and with methyl vinyl ketone in methanol containing Li₂PdCl₄, a common though very minor by-product, not incorporating alkene,

Scheme 3. Possible route from alkene-manganated chalcones and alkenes to cyclopentenol products 8 ($R_1 = 4$ -bromophenyl; $R_2 = R_3 = 4$ -trifluoromethylphenyl; $R_4 = 4$ -bromobenzoyl) and 12 ($R_1 = 4$ -chlorophenyl; $R_2 = 3,4,5$ -trimethoxyphenyl; $R_3 = H$; $R_4 = COCH_3$).

was identified [18] as the methanol adduct 15 of the methenyl α , β -butenolide 14, the latter possibly formed from the corresponding alkylmanganese precursor 13 by β -hydride elimination. In this case, the low yield of 14 may simply represent uncompetitive carbonyl insertion.

DeShong et al. have shown [8a] that butenolides related to 10 but with only one substituent at C(5) are formed when cyclomanganated enones are demetallated by H^+ or by H^- , so the reactions with alkenes reported here extend the range of butenolides that can be prepared from organomanganese reagents.

Other activated alkenes, methyl vinyl ketone or acrolein, also reacted with 3i or 3e in acetonitrile to give related lactones 10f and 10e, although reactions were less specific and yields were lower. The only other product identified from these reactions was from the reaction of 3i with methyl vinyl ketone in acetonitrile, where a substituted cyclopentenol 12 was found. This last species presumably forms as outlined in Scheme 3. Initially there is an insertion of the C=C of the alkene into the Mn-C bond of the cyclomanganated enone to give a seven-membered metallocyclic ring. The new Mn-C bond then adds across the C=O bond to form the cyclopentene ring and a manganese alkoxide which would give the alcohol on protonation. This cyclization reaction has precedence in reactions of alkynes [1,15,19] and alkenes [1,16] with orthomanganated aromatic ketones, and a new example of this type came from the reaction of ring-manganated chalcone 41 with methyl

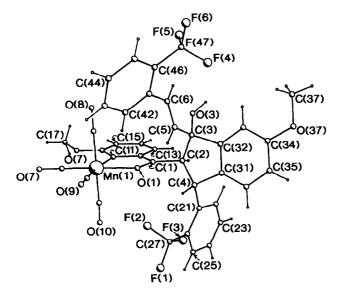


Fig. 1. Structure of $[2-((1S^*,2R^*,3S^*)-1-hydroxy-1-((E)-2-(2-trifluoromethylphenyl)ethenyl)-3-(2-trifluoromethylphenyl)-6-methoxy-2$ $indanylcarbonyl-<math>\kappa O$)-6-methoxyphenyl- κC^1]tetracarbonylmanganese (7a), formed during cyclomanganation of 1-(3-methoxyphenyl)-3-(2-trifluoromethylphenyl)prop-2-en-1-one. Selected bond parameters: Mn-C(11), 2.043(7) Å; Mn-O(1), 2.052(5) Å; C(1)-O(1), 1.251(8) Å, C(11)-Mn-O(1), 79.0°. Other bond lengths and angles fall within expected ranges.

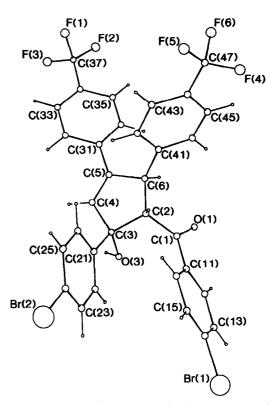


Fig. 2. Structure of $(1S^*,4S^*,5R^*)$ -5-(4-Bromobenzoyl)-1-(4bromophenyl)-3,4-di-(4-trifluoromethylphenyl)cyclopent-2-en-1-ol (8) formed during cyclometallation of 1-(4-bromophenyl)-3-(4-trifluoromethylphenyl)prop-2-en-1-one. Only one of the orientations of the disordered CF₃ group at C(37) is shown.

acrylate, which gave a high yield of an undefined stereoisomer of the substituted indanol 11. This is the expected product based on comparisons with other orthometallated aryl ketones, so the chalcone side chain is having no influence on the course of reaction.

Chalcones themselves are activated alkenes, and the reaction type just described explains some of the high-molecular-mass products detected as by-products in the metallation reactions described earlier. For example, from the preparation of 4j, 26% of 7a was also isolated. The compound was identified by an X-ray crystal structure determination (Fig. 1) which highlights the extensive substitution in the five-membered ring by bulky groups, including an orthomanganated acetophenone. This product is clearly a more complicated example of the alkene-coupled product 11 formed (see above) from the ring-manganated species 4l. Similar products are to be expected, and are found (7b-7e), in 12-28% yields, in all of the metallation reactions of chalcones where ring metallation is favored.

Similarly, with substrates which are not ringmanganated, a different type of product is expected, related to those formed by reaction of alkenemanganated complexes with alkenes. Indeed, a cyclopentenol 8 was isolated in 10% yield from the manganation reaction forming 30, and was structurally characterized by X-ray crystallography as shown in Fig. 2. The crystal consists of molecules linked via O(3)- $H(1)\ldots O(1)$ hydrogen bonds. The five-membered ring of **8** is highly substituted, but otherwise the geometry is unremarkable. The formation of **8** can be envisaged to parallel the route given in Scheme 3 for the preparation of **12**.

Acknowledgements

We thank Professor Ward T. Robinson and Jan Wikaira, University of Canterbury, for collection of X-ray intensity data, and Professor M.I. Bruce and Dr C. Adams, University of Adelaide, for mass spectra.

References

- [1] L. Main and B.K. Nicholson, Adv. Met.-Org. Chem., 3 (1994) 1.
- [2] A.W. Cabral, Ph.D. Thesis, University of California, Los Angeles, 1981.
- [3] N.P. Robinson, *D.Phil. Thesis*, University of Waikato, New Zealand, 1989.
- [4] W. Tully, M.Sc. Thesis, University of Waikato, New Zealand, 1991.
- [5] R.C. Cambie, M.R. Metzler, C.E.F. Rickard, P.S. Rutledge and P.D. Woodgate, J. Organomet. Chem., 425 (1992) 59.

- [6] D.A. Harbourne and F.G.A. Stone, J. Chem. Soc. A (1968) 1765.
- [7] B.L. Booth and R.G. Hargreaves, J. Chem. Soc. A (1969) 2766;
 J. Chem. Soc. A (1970) 308.
- [8] (a) P.D. DeShong, D.R. Sidler and G.A. Slough, *Tetrahedron Lett.*, 28 (1987) 2233; (b) P.D. DeShong, D.R. Sidler, P.J. Rybczynski, G.A. Slough and A.L. Rheingold, J. Am. Chem. Soc., 110 (1988) 2575.
- [9] (a) R.D. Closson, J. Kozikowski and T.H. Coffield, J. Org. Chem., 22 (1957) 598; (b) M.I. Bruce, M.J. Liddell and G.N. Parr, Inorg. Synth., 26 (1989) 172.
- [10] N.P. Robinson, D.Phil. Thesis, University of Waikato, New Zealand, 1989.
- [11] SHELXS-86, G.M. Sheldrick, University of Göttingen, Germany, 1986; SHELX-76, G.M. Sheldrick, University of Cambridge, UK, 1976.
- [12] P. DeShong, G.A. Slough, D.R. Sidler, P.J. Rybczynski, W. von Philipsborn, R.W. Kunz, B.E. Bursten and T.W. Clayton, Organometallics, 8 (1989) 1381.
- [13] H. Takahashi and J. Tsuji, J. Organomet. Chem., 10 (1967) 511.
- [14] R.L. Bennett, M.I. Bruce and I. Matsuda, Aust. J. Chem., 28 (1975) 1265; M.I. Bruce, Angew. Chem., Int. Edn. Engl., 16 (1977) 73; and references therein.
- [15] L.S. Liebeskind, J.R. Gasdaska, J.S. McCallum and S.J. Tremont, J. Org. Chem., 54 (1989) 669.
- [16] L.H.P. Gommans, L. Main and B.K. Nicholson, J. Chem. Soc., Chem. Commun. (1987) 761.
- [17] E. Hauptman, S. Sabo-Etienne, P.S. White, M. Brookhart, J.M. Garner, P.J. Fagan and J.C. Calabrese, J. Am. Chem. Soc., 116 (1994) 8038, and references therein.
- [18] J.M. Cooney, D.Phil. Thesis, University of Waikato, New Zealand, 1994.
- [19] N.P. Robinson, L. Main and B.K. Nicholson, J. Organomet. Chem., 364 (1989) C37.